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Abstract

Prior work has shown that the use of Hot Deck type imputations may induce bias
when the imputation is used as the dependent variable in a regression setting. Some
researchers have argued that imputations are useful in order to increase sample size
when data are missing. This paper demonstrates that when the imputations occur
as the dependent variable, the sampling variance when imputations are included is
larger than both the sampling variance of the complete case (no imputations estimtor)
and the sampling variance typically estimated by computer packages. The use of
imputations in the dependent variable do not improve precision.



1 Introduction

Missing data is a significant issue in a variety of empirical applications. A common

approach to missing data is to impute a value, often based upon other non-missing

data provided from the same observation. Perhaps the most common example of this

are the "hot deck" imputations provided by the U.S. Census Bureau for earnings in the

Outgoing Rotation Group (ORG) measure of hourly earnings and the Annual Social

and Economic Survey (ASEC) measure of annual earnings. This paper examines

the effi ciency of using hot deck type imputations in both sample mean estimation

and most importantly in a regression setting when the imputed variable is used as a

dependent variable. Other Census products and many other publicly released data

sets also include hot deck type imputation. Other imputations will have similar

impacts on sampling distributions and must be worked out in a case-by-case basis.

Little and Rubin (2014) provide an extensive treatise on imputation. The em-

phasis in their book is on obtaining consistent estimates and they often focus on

estimation when missing data would bias results. While they provide a variety of

options and include approaches to address proper estimation of standard errors, in

many cases the standard errors require extensive knowledge of how imputation was

conducted. They seldom compare estimation using imputations to estimation using

only the observed sample, and generally assume - when discussing sampling variance

- that imputation will be constructed by the user. These assumption are important

and Little and Rubin (2014) make it clear that any imputation must be conducted

in the context of the model to be estimated. Little and Rubin (2014) cite Dempster

and Rubin (1983) and warn:

"The idea of imputation is both seductive and dangerous. It is seductive

because it can lull the user into the pleasurable state of believing that

the data are complete after all, and it is dangerous because it lumps

together situations where the problem is suffi ciently minor that it can be
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legitimately handled in this way and situations where standard estimators

applied to the real and imputed data have substantial biases."

However, data sets are often released with imputations built in. Researchers often

give little thought to imputation and use the imputed observations as though they

are "real" data. The release of data with imputations unfortunately encourages such

behavior. Hirsch and Schumacher (2004) and Bollinger and Hirsch (2006) present

arguments for why use of imputations produced by hot deck type approaches may

bias regression results. Many researchers - presumably concerned about sample size -

use imputations. Most inference using imputations fails to account for the additional

sampling variance induced by imputations.

This paper examines simple cases primarily focused on a regression setting where

the missing data are only in the dependent, Y , variable. In that case, the assumption

of missing at random (missing rates related only to X values in the regression) com-

bined with typical model assumptions result in estimation that is consistent for both

the imputed sample (the sample containing a mix of observed and imputed data)

and the complete case (no imputations) sample. In cases where either the missing

at random assumption fails, or the model assumptions fail, far more complicated

approaches would need to be taken than are typically used.

The results indict the use of imputations: far from improving precision they in-

crease sampling variance and result in less precise estimates. The typical standard

errors estimated by computer packages are not correct when imputations are used.

Unless the researchers take care to adjust standard errors appropriately, inference will

be biased. Researchers often include imputations because the increase sample sizes.

The results here show that for missing dependent variables in a regression setting this

is illusory, that the gain is due to improper estimates of the actual standard errors,

not a gain in sample size.

Section two defines terms and establishes assumptions. Section three examines

the case of hot deck type imputations in two settings: a simple mean with missing
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completely at random (MCAR) and a regression setting with missing at random

(MAR). Section four presents three simulation exercises which highlight the analytic

results. Section five presents a short empirical example using March 2018 ASEC

data in a standard Mincer wage equation. The conclusions provides suggestions for

alternative approaches including Inverse Probability Weighting (Moffi tt, Fitzgerald,

Gottschalk, 1999; Wooldridge, 2002; 2007).

2 Missingness Model

For simplicity, I focus on data with a single Y variable and a covariateX. Inference is

focused on some mean of Y , either the mean E [Y ] = µ or the conditional expectation

E [Y |X] = α + βX. This paper is focused on missingness in Y and is motivated by

the high rate of earnings missingness in the March Current Population Survey (see

Bollinger et al. 2019; Bollinger and Hirsch, 2006; and Hirsch and Schumacher, 2004).

Missing rates for the earnings data in the Outgoing Rotation Groups are over 30%.

Recent years of the Annual Social and Economic Survey similarly have 25% or higher

missing data rates for earnings. Other variables such as race, gender and education

are largely reported by survey respondents, and have missingness rates below 2%.

The missing data literature defines two potential mechanism for missingness.

Missing completely at random (MCAR), the strongest assumption about the missing-

ness process, implies that Pr[M = 1|Y,X] = Pr [M = 1] , whereM is an indicator for

Y being missing (Seaman et al (2013)). The second assumption is missing at random

(MAR) where Pr [M = 1|Y,X] = Pr [M = 1|X] . Here, missingness may be related

to X values, but not Y . If data are MCAR then E [Y |M ] = E [Y ], If data are MAR

then E [Y |M,X] = E [Y |X] since Y is independent of M conditionally on X.

I will assume MCAR when considering inference in estimation of means, and MAR

in considering inference in estimation of the regression. The assumption of MCAR is

clearly too strong, and is obviously rejected by the literature. Indeed, when MCAR

fails, and MAR holds, imputations can and do reduce or eliminate bias in estimation
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of the mean from sample selection on X. I use MCAR below to simplify the results

and focus on the issue of inference. Moreover, the simple model provides a framework

for understanding the issue in the MAR case. The assumption of MAR however, is

crucial to the Census hot deck and all imputation approaches (see Little and Ruben,

2014). Unfortunately it is seldom investigated and the few cases that have (see for

example Lillard, Smith, and Welch, 1988; Bollinger and Hirsch, 2013; Bollinger et al,

2019) find at least some evidence against this assumption. The focus here, however,

is not on the appropriateness of MAR, but rather under the assumptions made by

Census, how do imputations impact sampling variance, inference, and effi ciency. The

reason often cited by researchers for using imputations is to improve effi ciency by

including additional observations.

3 Hot Deck Imputations

The hot deck imputation method of Census is a highly sophisticated approach to

imputing individual missing variables. Census also has a "whole impute" hot deck

approach for individuals who do not respond to the Annual Social and Economic

Survey supplement. I focus here on earnings since the imputation rate is very

high for this variable and earnings regressions are common. A detailed explanation

of the hot deck procedure can be found in Hokayem, Raghunathan and Rothbaum

(2020). Individuals who are employed but do not respond to the earnings questions

are classified using sixteen key variables known to be correlated with earnings and or

missingness of earnings. The variables are broken into multiple categories, and the

intersection of these provide over 3.8 million cells or decks. In the 1970’s when the

approach was developed (with fewer variables and categories), data were processed on

punch cards. When an observation came in with a completed response for earnings,

after processing that observation, the punch card was placed in a the deck of punch

cards corresponding to its appropriate categories. When an observation arrived

for processing which was missing the earnings the top card on the "hot deck" for

4



that category was drawn and replaced the actual missing observation. Today the

processing is completely electronic but the basic idea still holds. A missing value is

replaced by a random draw from the bin of observed incomes defined by the sixteen

variables and their categories. In the case of the ASEC, when a match cannot be

found, cells are collapsed (see Hokayem, Raghunathan and Rothbaum, 2020) until

a match is found. In essence, this is a highly sophisticated, non-parametric model

which generates an imputation with the same mean and variance, conditional on a

set of X’s, as the missing observation.

To model the hot deck I consider two less complicated approaches. In the first

approach, which I will call the simple hot deck, I assume MCAR and assume that

an imputation is a random draw from the complete case sample. One perspective

on this would be to consider all the data in a single cell of the actual hot deck

approach. In the second approach, which I’ll call the match hot deck, I consider a

single X (presumably categorical), assume MAR (conditional on that X) for Y, and

assume an exact match (based on X) can always be found. While this over-simplifies

a sophisticated approach, it preserves two key elements of the hot deck procedure:

imputations are randomly drawn observations from the complete case sample and the

mean and variance of the original distribution of Y is preserved. Further, it implies

(see appendix B) that all estimators below are unbiased under the hot deck procedure.

The focus here is on sampling error and effi ciency.

Throughout the paper, I will assume that a random sample from the population

is drawn with n observations. Two variables are intended to be measured: Yi and

Xi (although X plays no role in some sections). For n1 observations both variables

are observed: {Yi, Xi}n1i=1 . For n2 observations only Xj is observed {., Xj}n2j=1 . By

random sampling, the original observations are independent. Let Yj be imputed

values drawn either through the simple hot deck or the match hot deck. Without

loss of generality, we will assume that n2 < n1 and that hot deck draws are done

without replacement so that no donor appears twice. If the match hot deck is
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employed, the match is perfect so that Xi from the donor = Xj from the recipient.

3.1 Sample Mean Case

The simple sample mean case is a useful departure point. Estimators and their

sampling properties are straightforward. It is also quite similar to the regression

case below, as it is often forgotten that the sample mean is simply the regression on

only an intercept. Throughout this section I maintain four assumptions:

A1 : E [Y ] = µ

A2 : V (Y ) = σ2

A3 : MCAR

A4 : simple hot deck

Let

Ỹ ∗ =
1

n

n∑
i=1

Yi

be the ideal sample mean, where no observations are missing. Recall that under

random sampling, A1, and A2, the ideal sample mean is unbiased and has a sampling

variance of σ
2

n
. Let

Ŷ =
1

n1

n1∑
i=1

Yi

be the complete case mean. Under MCAR and random sampling, the complete case

mean is unbiased and has sampling variance σ2

n1
. Let

̂̂
Y =

1

n

(
n1∑
i=1

Yi +

n2∑
j=1

Yj

)
,

be the imputed mean, where the Yj are the imputed values. The key insight here is

that any Yj used an imputation is a repeat of a Yi from the observed sample. The

original sampling frame is random sampling, resulting in independence, but this is

subverted by reusing observations. The imputed mean is also unbiased (see appendix
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B) under these assumptions, but it is important here to point out that MCAR is

crucial.

Consider the variance of our imputed mean

V

(̂̂
Y

)
=

(
1

n2

)(
V

(
n1∑
i=1

Yi

)
+ V

(
n2∑
j=1

Yj

)
+ 2Cov

(
n1∑
i=1

Yi,

n2∑
j=1

Yj

))
. (1)

The covariance term arises because of the resampling from the original data. The

assumption that the hot deck uses no donor twice is relied upon, but would only add

a second covariance term. With the assumptions A2, A4, and MCAR this can be

expressed in two convenient ways (see appendix B):

V

(̂̂
Y

)
=

(
σ2

n

)(
1 +

2n2
n

)
=

(
σ2

n1

)(
1 +

n2
n

(
n1 − n2

n

))
. (2)

There are two important comparisons here. First note that the sampling variance

is larger than the ideal sample mean variance σ2

n
<
(
σ2

n

) (
1 + 2n2

n

)
. This implies

that our imputed sample mean is less effi cient than the ideal sample mean. This is

well understood in the imputation literature, but when typical computer commands

are used, the estimated standard errors are generated using the ideal sample mean

variance expression which understates the true sampling variance of the imputed

sample mean estimator. Thus inference on these means is invalid.

The second important comparison is to σ2

n1
the complete case sampling variance.

The second expression in equation 2, and the assumption that n1 > n2 demonstrate

that the sampling variance of the imputed sample mean is larger than the sampling

variance which would be achieved in the complete case estimate. The intuition on

this is actually quite simple. The imputed sample mean is the complete case sample

mean averaged with a random subsample of the complete cases. Thus variation

increases in the same way that adding two correlated random variables together

increases variation. If the complete case average is above (below) the true mean,

then the additional imputed mean is likely to be above (below) the average as well,

increasing sampling swings.
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There are two interesting extreme cases: if n2 = 0, then including imputations

(none) results in an estimate that is equivalent to simply using the observed sam-

ple. The other extreme is when n1 = n2 where again, the resulting sample variance

expression is equal to that achieved by the observed sample alone. Under the as-

sumptions here this second case results in every actual observation being repeated as

an imputation exactly once. This second case highlights a key insight of this note:

you cannot improve your sample precision by using the data more than once. While

the details of other settings will be slightly more complicated, this key insight drives

all results.

3.2 Regression Setting

A regression setting allows the more realistic MAR assumption to be used. Through-

out this section I assume the match hot deck is performed in an "ideal" manner: each

draw of Y comes from a perfect match toXj. Bollinger and Hirsch (2006) established

that in the absence of perfect matching, imputations cause bias in all coeffi cients. In

addition to random sampling, the following assumptions hold:

A5 : Yi = α + βXi + εi

A6 : E [εi|Xi] = 0

A7 : V (εi|Xi) = σ2

A8 : MAR

A9 : match hot deck.

For simplicity, I will treat the X ′s as non-stochastic. Alternatively, one could derive

similar results conditional on the realized X ′s or apply asymptotic results. The main

point follows regardless. I focus on the regression slope from an ordinary least squares

regression. Similar to the sample mean above, define

b̃∗ =

∑n
i=1

(
Xi −X

) (
Yi − Y

)∑n
i=1

(
Xi −X

)2
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to be the ideal slope where no observations are missing. This is unbiased and has a

sampling variance of

V
(
b̃∗
)
=

σ2∑n
i=1

(
Xi −X

)2 . (3)

Let

b̂ =

∑n1
i=1

(
Xi −X1

) (
Yi − Y 1

)∑n1
i=1

(
Xi −X1

)2
be the complete case slope. Note that X1, the sample mean from the complete case

sample may be very different than X, the sample mean from the full sample. Both

are observable to the researcher. Similarly, Y 1 and Y may differ as well (in contrast

to the section above). The MAR assumption ensures that

E [Yi|Xi,Mi = 0] = E [Yi|Xi] = α + βXi.

Thus the complete case slope is unbiased and its sampling variance is:

V
(
b̂
)
=

σ2∑n1
i=1

(
Xi −X1

)2 . (4)

The imputed slope coeffi cient will be

̂̂
b =

∑
i

(
Xi −X

) (
Yi − Y

)
+
∑

j

(
Xj −X

) (
Yj − Y

)∑
i

(
Xi −X

)2
+
∑

j

(
Xj −X

)2 .

The structure of ̂̂b is quite similar to that of the imputed sample mean above: the
two terms in the numerator represent the averages for the observed (indexed by i)

and the imputed (indexed by j). The key result hinges again on the fact that Yj is

perfectly correlated with its donor Yi. Since the match is perfect, Xj = Xi as well.

The sampling variance of the imputed slope is

V

(̂̂
b

)
=

σ2(∑
i

(
Xi −X

)2
+
∑

j

(
Xj −X

)2) ∗ (5)

1 + 2
∑

j

(
Xj −X

)2(∑
i

(
Xi −X

)2
+
∑

j

(
Xj −X

)2)
 .
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As with the simple mean case, the sampling variance with the hot deck imputations

is larger than the ideal estimator sample variance. This expression is structurally

identical to the one in the sample mean case: simply replace
∑

i

(
Xi −X

)2
with n1

and
∑

j

(
Xj −X

)2
with n2 and the result from the sample mean case emerges. The

role of the terms like
∑

i

(
Xi −X

)2
is similar to that of n1 and n2 as these sums rise

with n in a similar way. The key result is that the usual formula for the sampling

variance computed by statistics packages is wrong, and understates the standard

errors of the actual estimate when imputations are included.

Comparison to the complete case estimator is more challenging under MAR, be-

cause X and X1 may differ. The variance of the imputation estimator can be

expressed in terms of the variance of the complete case estimator:

V

(̂̂
b

)
=

σ2∑n1
i=1

(
Xi −X1

)2∗ (6)(
1 +

( ∑
j(Xj−X)

2∑
i(Xi−X)

2
+
∑
j(Xj−X)

2

)
∗((∑

i(Xi−X1)
2−
∑
j(Xj−X2)

2
)
−
(
n21n2
n2
(X1−X2)

2
)

∑
i(Xi−X)

2
+
∑
j(Xj−X)

2

)) .

It is less clear here whether the term multiplying the variance of the complete case

estimator is larger or smaller than 1. The term
( ∑

j(Xj−X)
2∑

i(Xi−X)
2
+
∑
j(Xj−X)

2

)
is positive.

The term
(∑

i

(
Xi −X1

)2 −∑j

(
Xj −X2

)2)
is similar to the difference n1 − n2 in

that the two sums each have that many terms. However, it also involves the difference

in variation of X between the observations with observed Y and missing Y. The term
n21n2
n2

(
X1 −X2

)2
measures the squared difference in means.

Consider conditions on whether the term
(∑

i

(
Xi −X1

)2 −∑j

(
Xj −X2

)2)
would

be positive (if it is negative, then certainly the imputation variance is less than the

complete case variance). Simple algebra provides:

S21
S22

>
n2
n1
,

where S21 is the sample variation in X for observations where Y is observed, while S22

is the sample variation in X when Y is missing. Considering the case of the ASEC,
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where the proportion of missing earnings is approximately 25%, the ratio n2
n1
would

be 1/3. Thus, the term is positive provided that S22 is no more than three times S
2
1 .

In an MCAR world, the term
(∑

i

(
Xi −X1

)2 −∑j

(
Xj −X2

)2)
will be dominated

by the relative sample sizes, as the sample variances of the two groups will be quite

close. Similarly the difference in means should be small, and the second term will

be small.

The cost of not using the observations where Y is missing is determined by the

loss in variation in X from the missingness process. OLS slope estimators have

smaller sampling variance when the explanatory variables have larger variation. If

missingness in Y reduces variation inX either through a reduction in variation around

the sample mean, or by a reduction in variation due to a shift in the sample mean,

the imputation estimator could result in improved precision of the estimate relative

to the complete case estimate.

While the comparison of this case to the complete case estimator is less clear as to

whether imputations can improve the estimation of linear model, the important result

is that using hot deck type imputations in estimation requires a different expression

for the standard errors than is typically used. The gains are smaller than one may

think based purely on sample sizes. The cost of mismatch, as outlined in Bollinger

and Hirsch (2006) is high.

4 Monte Carlo Results

Analytic results comparing the complete case analysis to the imputation estimator

are clear for MCAR, but less clear for MAR. To investigate this, I present the results

of two simulations. The first mimics the ideal set-up of the regression case, where

the X variable is a simple binary regressor and is matched perfectly in the imputa-

tion process. The imputations are drawn randomly without replacement (simulation

results with replacement are qualitatively similar and available upon request). The

results for this include a MCAR case and cases with missing Y rates differing across
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X values. The second simulation uses a continuous X variable and imputations are

drawn from a categorical assignment based on the continuous X. This case is similar

to how imputations in the CPS are constructed where age is divided into six cate-

gories and education is divided into three categories. The missing rate differs across

the values of X. In both simulations, the results highlight that as long as X is in-

cluded in the regression, even cases where missing is highly related to the X variable

do not bias regression results. However, imputations may lead to bias with match

error (Bollinger and Hirsch, 2006). Imputations must be done in the context of the

model to be estimated (Little and Rubin, 2014; Hokayem, Raghunathan, Rothbaum,

2020). The imputation estimators were less effi cient than the complete case. Using

imputations often leads to less effi ciency and higher true standard errors, even when

match bias is not an issue.

4.1 Ideal Case

The data generating process for this case relies on a binaryX variable with probability

of being 1 equal to 0.40. The dependent variable Y = 1+X+u, where u is a standard

normal variable and is generated independent of X. The full sample size is n = 1000.

Whether the Y value is missing is determined by

m = 1[v + d ∗X < pm+ d ∗ px]

where v is a uniform random variable, d is the differential rate for missing data, pm is

the overall rate for missing data and px is the probability X = 1. For example, with

d = 0 and pm = .25, 25% of the Y variables will be set as missing, and the probability

of missing will be the same regardless of the value of X. If d = .1, then if X = 1, the

rate at which Y will be missing is pm + d ∗ px − d = .25 + .1 ∗ .4 − .1 = .19. While

for X = 0 cases, the rate for missing Y will be 0.29: I use four differential rates:

0, .1 ∗ pm, 0.25 ∗ pm, 0.5 ∗ pm. I chose six different overall missing rates for pm:

0.05, 0.1, 0.15, 0.2, 0.25, 0.3. I provide three estimates of the slope coeffi cients:

the ideal slope
(
b̃∗
)
, the complete case estimator

(
b̂
)
, and the imputed estimator
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(̂̂
b

)
. I report three statistics for each estimator: the average slope, the variance of

the slope, and the mean squared error of the slope from the ideal of 1. Five hundred

repetitions are used.

Panel A of Table is the case where the missing rate is the same across the two

values of X. The rows of panel A present the six different rates for missing Y

data. The first three columns provide the average estimate of the slope coeffi cient.

All three estimates are unbiased and consistent, and this is supported. The second

three columns are the variance, which should rise across the three columns. The first

column is the ideal estimator when no data are missing. As expected, the variance of

the ideal should not change with the missingness rate. The variance for the complete

case rises as the rate of missing data rises reflecting the declining sample size (at 5%

the expected sample size is 950, at 30% it is 700). A similar pattern in the column

where imputations are used highlights the key result: higher rates of imputations

resulting in higher variance. Down all rows, the variance in the imputations case is

higher than the variance in the complete case and rises with the missingness rate.

The final three columns present the mean squared error. The mean squared error

rises for both the complete case and imputation case as the missing rate and the

imputation column has the higher mean squared error.

Panel B imposes a small differential of 0.1 times the missing data rate. Thus in

the first row of panel B, where the overall missing rate is 5%, the differential is .5%

or half of 1%. When X = 1, the missing rate is 4.7% while when X = 0, the missing

rate is 5.2%. In the last row of panel B, the missing rate for X = 1 is 28.2% while

the missing rate for X = 0 is 31.2%. Panels C and D repeat this with a differential

of.25 ∗ px and .5 ∗ px. The patterns described above hold in these two panels as well:

the sampling variance and mean squared error of the imputation estimator rises with

the overall missing rate, and is always higher than the complete case estimator. The

differential in missing data rates does not play a significant role in either determining

the variance or the mean squared error. Estimates using the hot deck imputation are
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less precise than those using the complete case.

4.2 Imperfect Match Case

I display a set of results from the imperfect matching case studied by Bollinger and

Hirsch (2006). The use of bins to group variables such as age and education results

in biased coeffi cients. A continuous variable X is generated as a standard normal

random variable. As above Y = 1+X+u where u is standard normal and independent

of X. Imputation is based on k different quantiles of the values of X. An observation

with missing Y is imputed from the observations with X in the same group. The

regression specification uses the actual value of X. This simulates Census hot deck

using categories for age or education while researchers use age and years of education.

In table 2 the average of the estimated slopes, the variance of the estimated

slopes, and the mean squared error are all presented for the ideal, complete case

and imputation estimates. I focus on a missing rate of 25% which is completely at

random (similar to panel A of table one where the rate does not depend on X). I use

five different levels of groups for the imputation process: 1, 2, 4, 6 and 10. The case

of one group simulates the case studied by Hirsch and Schumacher (2004) where the

variable is not conditioned on in the imputation procedure. Other results (including

MAR) are similar.

There is no particular observable bias pattern in the estimated complete case

slope. Even if missing data in Y depended on the X variable this would not change

unless the model were misspecified. Unlike table 1, the estimated slopes from the

imputed estimator are attenuated. The bias should be largest for k = 1 as this

completely severs the relationship between X and Y for all imputed values. It may

be that ordering of data induced some improvement here. The bias is largest for

small groups and declines as the number of groups rises. The variation and mean

squared error of the imputed estimates is higher than the variation of the complete

case estimate.
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5 Empirical Example

The CPS ASEC data are used extensively by economists investigating the determi-

nants of earnings. Hirsch and Schumacher (2004) and Bollinger and Hirsch (2006)

have investigated the bias due to imputations when explanatory variables not used in

the imputation approach are included in estimation. Bollinger and Hirsch (2013) ex-

amined whether sample selection on unobservables led to bias when non-respondents

were removed from the sample. Bollinger et al (2019) demonstrate that MAR does

not hold.

The data here derive from the March 2018 ASEC. The sample is limited to male

heads of household between 18 and 64 years old who work full time year round. In the

ASEC data, individuals who do not provide a full response to the ASEC supplement

(but are participating in the monthly core) have their entire record imputed (whole

imputes). This introduces imputed X’s and thus I exclude them from this analysis.

Table 3 presents summary statistics for three samples: the full sample, the com-

plete case sample, and the imputed sample. The first two columns present the mean

and standard deviation of the full sample (n=14,281), including observations where

the dependent variable is imputed. The variables chosen are standard variables in a

basic Mincer earnings model: Age, race and education. Imputed earnings are 23.4%

of the sample. The third and fourth column are the 10,993 complete case observa-

tions. The fifth and sixth column are the observations where earnings is imputed.

There are few differences in mean or standard deviation between the Complete Case

sample and the Imputed Sample. The imputed sample is slightly older and has a

larger spread of ages, has slightly higher proportions of minorities, and is generally

less well educated. The relatively small differences will likely be overwhelmed by the

sample size and we would expect the corrected variance of the full case estimator to

be larger than the complete case estimator.

Table 4 presents the estimates from using the full sample and the complete case

sample. The standard errors calculated by Stata’s regress command are reported in
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the column "old S.E." (second column) while the standard errors which adjust for

the imputations are reported in the column labeled "new S.E." (third column). The

complete case coeffi cients and their appropriate standard errors, are reported in the

fourth and fifth column. The coeffi cients differ little between the two estimates.

The standard errors ("old S.E.") which treat the imputations as independent draws

from the population are the smallest. The properly adjusted standard errors for the

imputed estimator are larger than the standard errors for the complete case estima-

tor. The differences in mean and variance between the complete case and imputed

sample do not dominate the covariance induced by re-using Y. The result is clear: the

standard errors produced normally by statistics packages understate the sampling

variance when imputations are included in the dependent variable and the complete

case estimator is more effi cient. The alleged loss in sample size or spread is not

remedied by the inclusion of imputations.

6 Conclusion

Economists are fond of the phrase, "There is no such thing as a free lunch." One

cannot improve sample precision by simply repeating the same observations, even if

you call them "imputations." There are good and important reasons for considering

the implications of missing data, and imputations can, in the case of MAR, reduce bias

in estimates of means. This is the setting where advocates of imputation methods

typically focus attention, and rightfully so. Even then standard errors should be

adjusted. In situations where estimation of a regression or more complex model is

needed, the approaches needed for consistent estimation and inference are far more

complicated than the use of stock imputations provided by a statistical agency. At

the very least, a sound understanding of the imputation approach and its interaction

with the model to be estimated is required, and stock estimators for standard errors

cannot be used. The Census Bureau does provide a set of a adjustments for sampling

variation (see, U.S. Bureau of the Census, 2018). However it is not clear that this
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actually adjusts fully for hot deck imputations.

Another approach is to use sampling weights based on the known covariates with

missing data (see Wooldridge, 2003; Moffi tt, Fitzgerald, and Gottschalk, 1999). In-

deed the hot deck procedure is simply a reweighting approach where observations

which are under-represented in the observed data are replicated to construct a data

set which mimics a more representative sample. The advantage to weights is that

most computer packages are capable of using weights and adjusting sampling variance

estimates appropriately for those weights.

In a regression setting, if we believe that Y is missing at random, conditional on a

set of known X ′s (a necessary condition for imputations), then provided our regres-

sion model is correctly specified on those variables, complete case estimates are still

unbiased and consistent: the resulting sample of Y is random conditional on the X ′s

which is a suffi cient condition. Under these assumptions it is diffi cult to find con-

ditions where the imputation estimator improves upon the complete case estimator.

Hirsch and Schumacher (2004) and Bollinger and Hirsch (2006) have shown condi-

tions where imputations under MAR can result in bias. Hokayem, Raghunathan and

Rothbaum (2020) demonstrate an improved imputation approach which addresses

some of the concerns raised in Bollinger and Hirsch (2006)

Many Census products and many researchers have used various types of impu-

tations to address missing data. While there are conditions (see Little and Rubin,

2014) under which imputation may be used very effectively, in particular when miss-

ing data occurs on the right hand side of the regression equation, researchers should

be cautious. The key assumption of missing at random is also called into question

by recent research of Bollinger and Hirsch (2013) and Bollinger et al. (2018). If the

missing at random assumption fails, the standard hot deck or other approaches will

not work. Bollinger and Hirsch (2013) demonstrate the use of a sample selection

correction approach, but this too requires strong assumptions.
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Table 1: Ideal Imputation Simulations, n=1000, reps = 500, true b = 1, Probability X =1 is 0.40 
Panel A: Prob X =1 is .4, differential is zero (MCAR)  

Mean  Variance Mean Squared Error 
Probability of 
Missing 

Full 
Sample 

Complete 
Case 

With 
Imputations 

Full 
Sample 

Complete 
Case 

With 
Imputations 

Full 
Sample 

Complete 
Case 

With 
Imputations 

0.05 1.002 1.002 1.003 0.00439 0.00455 0.00479 0.00438 0.00455 0.00479 
0.1 0.997 0.998 0.997 0.00393 0.00434 0.00484 0.00393 0.00434 0.00484 
0.15 1.000 1.000 0.999 0.00361 0.00435 0.00508 0.00360 0.00435 0.00507 
0.2 1.007 1.006 1.009 0.00361 0.00456 0.00541 0.00365 0.00459 0.00548 
0.25 1.003 1.003 1.002 0.00447 0.00607 0.00674 0.00447 0.00607 0.00673 
0.3 1.000 1.001 0.997 0.00411 0.00632 0.00704 0.00410 0.00631 0.00703 
Panel B: Missing Differential is .1 
0.05 1.000 1.000 1.000 0.00467 0.00507 0.00530 0.00466 0.00506 0.00529 
0.1 1.001 1.001 0.999 0.00396 0.00450 0.00477 0.00395 0.00449 0.00476 
0.15 1.000 1.001 1.000 0.00360 0.00412 0.00442 0.00360 0.00411 0.00441 
0.2 1.004 1.004 1.008 0.00440 0.00546 0.00587 0.00440 0.00547 0.00592 
0.25 1.003 1.005 1.006 0.00389 0.00523 0.00582 0.00390 0.00524 0.00584 
0.3 1.003 1.004 1.006 0.00396 0.00551 0.00602 0.00396 0.00552 0.00604 
Panel C: Missing Differential is .25 
0.05 0.995 0.994 0.994 0.00417 0.00454 0.00462 0.00418 0.00456 0.00464 
0.1 0.995 0.996 0.995 0.00384 0.00446 0.00481 0.00386 0.00447 0.00482 
0.15 0.998 0.999 0.998 0.00426 0.00493 0.00560 0.00426 0.00492 0.00559 
0.2 1.000 1.000 1.000 0.00401 0.00488 0.00538 0.00400 0.00487 0.00537 
0.25 0.999 0.998 0.998 0.00428 0.00559 0.00607 0.00428 0.00558 0.00606 
0.3 1.004 1.002 1.001 0.00449 0.00632 0.00712 0.00449 0.00631 0.00711 
Panel D:  Missing Differential is .5  
0.05 1.002 1.002 1.001 0.00403 0.00408 0.00418 0.00403 0.00408 0.00417 
0.1 0.995 0.995 0.996 0.00387 0.00439 0.00463 0.00389 0.00441 0.00463 
0.15 1.003 1.003 1.003 0.00453 0.00491 0.00553 0.00453 0.00491 0.00552 
0.2 1.001 0.999 0.998 0.00421 0.00500 0.00560 0.00420 0.00499 0.00559 
0.25 1.001 1.000 1.004 0.00402 0.00500 0.00540 0.00401 0.00499 0.00541 
0.3 1.002 1.002 1.002 0.00417 0.00616 0.00682 0.00417 0.00615 0.00682 
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Table 2: Partial Match Imputation  
Mean Slope Variance Slope Mean Squared Error 

Imputation 
Groups 

Full 
Sample 

Complete 
Case 

With 
Imputations 

Full 
Sample 

Complete 
Case 

With 
Imputations 

Full 
Sample 

Complete 
Case 

With 
Imputations 

1 1.001 1.002 0.949 0.00104 0.00133 0.00165 0.00104 0.00133 0.00421 
2 0.999 0.999 0.906 0.00105 0.00141 0.00181 0.00105 0.00141 0.01056 
4 1.000 1.000 0.965 0.00099 0.00128 0.00155 0.00099 0.00128 0.00280 
6 0.999 0.998 0.977 0.00099 0.00132 0.00164 0.00099 0.00132 0.00218 
10 1.001 0.999 0.988 0.00102 0.00135 0.00153 0.00102 0.00135 0.00166 
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Table 3: Sample Summary Statistics 
 Full Sample Complete Case Imputed Earnings 
VARIABLES mean sd mean sd mean sd 
       
Age 42.91 11.03 42.68 10.93 43.66 11.29 
Log(earnings) 10.99 0.735 11.00 0.725 10.95 0.766 
Black 0.101 0.301 0.0915 0.288 0.131 0.338 
White 0.793 0.405 0.807 0.395 0.748 0.434 
Asian/Hawiian/Pacific Islander 0.0865 0.281 0.0825 0.275 0.0998 0.300 
Native American 0.0196 0.139 0.0193 0.138 0.0206 0.142 
Elementary School 0.0225 0.148 0.0211 0.144 0.0272 0.163 
Some High School 0.0438 0.205 0.0431 0.203 0.0463 0.210 
High School Degree 0.409 0.492 0.402 0.490 0.435 0.496 
Associates Degree 0.108 0.310 0.110 0.314 0.100 0.300 
Bachelors Degree 0.260 0.439 0.264 0.441 0.249 0.432 
Masters Degree 0.109 0.312 0.112 0.315 0.0995 0.299 
Profession/Ph.D. Degree 0.0466 0.211 0.0476 0.213 0.0436 0.204 
Imputed Earnings 0.234 0.424 0 0 1 0 
N 14,281 10,933 3,348 

Source: Authors calculations from March 2018 CPS ASEC, Male Head of Household,  
between age 18 and 64, no whole imputes, full time, full year workers with positive earnings. 
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Table 4: Regression Comparisons 
 Full Sample Complete Case 

   Coef F.S.   Old S.E.  New S.E.   Coef C.C. Std. Err. 
Age 0.067 0.0038 0.0046 0.074 0.0043 
Age squared (000’s) -0.664 0.0442 0.0530 -0.732 0.0500 
Black -0.219 0.0182 0.0224 -0.230 0.0212 
Asian/Hawiian/Pac Isd. -0.012 0.0197 0.0238 -0.018 0.0225 
Native American -0.114 0.0392 0.0468 -0.152 0.0442 
Elementary School -0.497 0.0371 0.0454 -0.504 0.0428 
Some High School -0.341 0.0272 0.0326 -0.332 0.0307 
Associates Degree 0.158 0.0185 0.0218 0.162 0.0206 
Bachelors Degree 0.432 0.0137 0.0162 0.425 0.0153 
Masters Degree 0.615 0.0187 0.0220 0.618 0.0207 
Profession/Ph.D. 0.864 0.0267 0.0314 0.855 0.0297 
_cons 9.253 0.0798 0.0954 9.078 0.0899 

Source: Authors calculations from March 2018 CPS ASEC, Male Head of Household,  
between age 18 and 64, no whole imputes, full time, full year workers with positive earnings 

 



Appendix B
Claim 1 The sample mean using imputations is unbiased under random sam-
pling and assumptions A1 through A4..

E
[
Y
]
= E

 1
n

 n1∑
i=1

Yi +

n2∑
j=1

Yj
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=
1

n
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E [Yi] +

n2∑
j=1

E [Yj ]


Simple random sampling, MCAR and assumption A1 imply that E [Yi] = µ.
The assumption that the simple hot deck is a random draw, combined with
random sampling, MCAR and assumption 1 also insure that E [Yj ] = µ. Unbi-
asedness follows in the usual manner.

Claim 2 V
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As noted in the text
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Assuming that there are no double donors,

=

(
1
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With random sampling, MCAR, and random independent draws from the donors.

=

(
1
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With single donors,

Cov

 n1∑
i=1

Yi,

n2∑
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 =

n2∑
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since each Yj corresponds to a single Yi. Thus
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By assumption A2,

=
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1

n2
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Claim 3 Under assumptions A5 through A9, and non-stochastic X ′s : V
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b

)
=
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Consider εj = Yj − α − Xjβ. Recalling that Yj is an imputation and that
exact matching on Xj is assumed, as in the expressions in the simple mean case,
εj is an imputed ε and is drawn from the ε′is from the observed sample. (Note
that if matching were not perfect, εj = εi + (Xj −Xi)β, the key part of the
proof would hold: εj would still be a draw from the εis). Then the approach
here is nearly identical to the approach in the simple mean case above:
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This result is straightforward to extend to a multiple regression
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