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Summary

In this paper we present a Bayesian approach to estimate the mean of a binary variable and

changes in the mean over time, when the variable is subject to misclassification error. These

parameters are partially identified and we derive identified sets under various assumptions about the

misclassification rates. We apply our method to estimating the prevalence and trend of prescription

opioid misuse, using data from the 2002-2014 National Survey on Drug Use and Health. Using a

range of priors, the posterior distribution provides evidence that among middle-aged white men,

the prevalence of opioid misuse increased multiple times between 2002 and 2012.
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1. INTRODUCTION

In this paper we present a Bayesian approach to estimate the population mean of a binary variable as

well as changes in the mean over time, when the variable in question is subject to misclassification

error.1 Our methods can be applied when data is available from either a single cross section

or multiple independent cross sections, possibly supplemented with population-level weights. To

illustrate our approach, we conduct an empirical analysis of self-reported past-year misuse of opioid

pain relievers, using data from the 2002-2014 waves of the National Survey on Drug Use and

Health (NSDUH). We focus on opioids because they constitute a pressing public health concern

(e.g. Kolodny et al., 2015) and the misreporting of substance use in surveys is a well-documented

problem (Fendrich et al., 1999; Biemer and Wiesen, 2002; Ledgerwood et al., 2008; Kroutil et al.,

2010; Murphy et al., 2015).2

Although the empirical focus in this paper is on substance use, the problem of misclassification

arises in many different contexts. For example, Kreider and Pepper (2007) and Gosling and Saloniki

(2014) address misclassification in self-reported disability status. Gundersen et al. (2012) and

Meyer et al. (2015) document misreporting of participation in the food stamp program (SNAP).

Beyond surveys, data from clinical settings or public health surveillance systems are also subject to

misclassification error. The recent COVID-19 pandemic has highlighted the difficulties in estimating

coronavirus infection rates. While this largely results from sample selection issues, problems with

testing accurary, and in particular the potential for false negatives, can give rise to a substantial

amount of misclassification (e.g., Li et al., 2020). Simple estimates of the prevalence of health

conditions such as HIV, opioid misuse, or COVID-19 can affect policy decisions with widespread

health and economic implications. Furthermore, accurate measures of the trend in prevalence

of a condition are equally important as they motivate changes in, or even cessation of, these

same policies. A failure to account for misclassification errors leads to biased estimates of critical

parameters and undermines the development of effective, evidence-based policies.

Models with misclassification error have a long history in statistics and econometrics (e.g., Bross,

1Throughout this paper we will refer to the mean as prevalence and to changes in the mean over time as trends.
2Even apparently objective data such as those obtained from death certificates are subject to possible reporting

errors as new data systems have been implemented and medical examiners and other officials exercise personal
judgment on when to test for or report opioid use as a cause of death (Mertz et al., 2014; Ruhm, 2016; Rudd et al.,
2014, 2016).
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1954; Tenenbein, 1970). Unless the misclassification probabilities are known or a validation sample

(i.e., a set of observations that is known to be correctly classified) is available, the prevalence is

completely unidentified but the misclassification probabilities are partially identified (Bollinger and

Van Hasselt, 2017a). In a Bayesian model, the lack of identification does not require a different

approach to inference. While the likelihood function does not identify every model parameter,

the information contained in the prior can still lead to informative posterior distributions (Kadane,

1974). For example, Gaba and Winkler (1992), Joseph et al. (1995), Evans et al. (1996) and Rahme

et al. (2000) use beta priors for the misclassification rates to estimate the prevalence, resulting in

posterior density intervals that are strictly contained within the unit interval.

Since the influential contributions of Kadane (1974) and Poirier (1998), Bayesian inference in

models that are partially identified has been an active area of research (e.g., Poirier and Tobias, 2003;

Gustafson et al., 2005; Moon and Schorfheide, 2012; Hahn et al., 2016; Bollinger and Van Hasselt,

2017b). Using the nomenclature of Moon and Schorfheide (2012), the main feature of such models

is that the data are fully informative about a reduced-form parameter vector φ, in the sense that its

posterior becomes more concentrated as more data become available. Conditional on φ, however,

the data contains no further information about the structural parameter vector θ. The prior of

the non-identified and partially identified elements of θ is then updated by the data only to the

extent that φ and θ are a priori dependent. When θ is partially identified, prior dependence is

necessary for any prior that is consistent with the model, because the bounds of the identified set

are functions of φ. Put differently, the support of the conditional prior of θ is a function of φ. The

prior dependence between θ and φ, combined with Bayesian learning about φ, ensures that at least

some learning about θ occurs (Poirier, 1998; Poirier and Tobias, 2003).

This paper makes two main contributions. First, we extend the work of Pepper (2001) and

derive identified sets for prevalence and trend under a range of assumptions about changes in mis-

classification over time. Our results show that under sufficiently strong assumptions, the direction

(upward or downward) of a trend is identified. Second, we develop a Bayesian approach to infer-

ence, where the identified sets are used to specify a range of priors that researchers might entertain

in practice. The posterior distribution takes a simple form and random samples from it are easily

generated. While our development focuses on estimating prevalence and trends from repeated cross

sections, a case that is relevant for many nationally representative survey samples, our approach can
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be valuable in other settings as well. In the supplemental appendix, we discuss how our methods

might be adapted for use in regression models.

In partially identified models, bounds are often only informative under strong assumptions.

For example, to identify the direction of a trend, Pepper (2001) assumes that the probability of

misclassification error has a known upper bound. In practice, there can be considerable uncertainty

about the appropriate value of such a bound. An advantage of a Bayesian approach is that this

uncertainty can be incorporated into the prior. Additionally, information contained in the prior

can lead to more precise inference relative to a classical bounds analysis. This is apparent in our

empirical analysis. The classical bounding approach identifies the direction of the trend only under

very strict assumptions. Without these assumptions, the estimated bounds move farther apart and

become practically useless. In contrast, for a range of prior distributions and assumptions, the

Bayesian posterior provides strong evidence that among middle-aged white men, the prevalence of

opioid misuse increased several times between 2002 and 2012.

The remainder of this paper is organized as follows. In Section 2 we discuss the misclassification

model and the identified sets for the prevalence and trend under different assumptions about the

misclassification rates. Section 3 discusses a range of prior distributions and shows how to draw a

sample from the posterior. Section 4 presents our empirical analysis and Section 5 concludes. A

supplemental appendix contains more details about the identified sets, presents additional empirical

results for select subgroups, and suggests ways for extending our methods to a regression context.

2. THE MODEL

2.1. The Misclassification Problem

The model we present here is based on Bollinger and Van Hasselt (2017a), extended to the case

of a repeated cross section. Let Y ∗it = 0, 1 be the true value of a binary indicator for individual

i = 1, . . . , nt in time period t = 1, . . . , T , and let πt = E(Y ∗it) be its mean (the true prevalence).

Instead of Y ∗it , we observe a possibly misclassified variable Yit = 0, 1, where pt = Pr(Yit = 1|Y ∗it = 0)

is the probability of a false positive and qt = Pr(Yit = 0|Y ∗it = 1) the probability of a false negative.
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The observed prevalence µt = E(Yit) is related to (πt, pt, qt) through the equation

µt = πt(1− qt) + (1− πt)pt. (1)

We aim to learn about the prevalence πt and ∆πt,j = πt+j − πt, the trend between periods t and

t+j. It is clear from equation (1) that without additional information the parameters (πt, pt, qt) are

completely unidentified (e.g., Gaba and Winkler (1992)). It is common to assume that pt + qt < 1,

which ensures that the covariance between Y ∗it and Yit is positive (Bollinger, 1996; Lewbel, 2007;

Chen et al., 2008a,b). This assumption and equation (1) imply that pt ≤ µt and qt ≤ 1 − µt, and

the misclassification probabilities are now partially identified. The true prevalence πt, however,

remains completely unidentified. As a result, −1 ≤ ∆πt,j ≤ 1 and nothing can be learned about

the direction of the trend.

Additional information in the form of restrictions on the misclassification rates can yield non-

trivial bounds on the prevalence and the trend. In what follows, we consider a number of cases

that lead to partial identification. Throughout the discussion we maintain the assumption that

pt + qt < 1. Also, in the context of reporting prescription opioid misuse, it is highly unlikely that

an individual who does not misuse actually reports doing so (Bollinger and David, 1997). Thus, in

all but one of the cases we discuss below, we set pt equal to zero in all time periods.

2.2. Assumptions and Identified Sets

In this section we consider five different assumptions about the misclassification rates. The first

and most restrictive assumption is that the rate of false negatives (under-reporting) is constant

over time. We subsequently allow this rate to vary over time in different ways and show the impact

that this has on the identified sets for the prevalence and the trend. Our final assumption is

an extension that allows for the possibility of false positives. Details about the derivation of the

parameter bounds can be found in the supplemental appendix.

Case I. The first and most restrictive case we consider is the assumption that the probability

of false negatives is constant over time.

Assumption C-I. (i) qt = q∗ for t = 1, . . . , T , and (ii) pt = 0.
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Letting M = maxt µt, it follows from Assumption C-I and equation (1) that

µt ≤ πt ≤
µt
M
, t = 1, . . . , T. (2)

The trend in prevalence between periods t and t+ j is bounded as follows.

∆µt,j ≤ ∆πt,j ≤
∆µt,j
M

, if ∆µt,j ≥ 0,

∆µt,j
M

≤ ∆πt,j ≤ ∆µt,j , if ∆µt,j < 0.

(3)

Equations (2) and (3) show that the restrictions on (pt, qt) carry substantial identifying information.

Since there are only false negatives, the true prevalence in each time period is at least as large as

the observed prevalence, and may have an upper bound well below 1. Also, (3) shows that ∆πt,j

has the same sign as ∆µt,j : if the observed prevalence increases (decreases) between time periods

t and t+ j, then so does the unobserved true prevalence.

Case II. We now assume that the rate of false negatives is non-decreasing over time. This

occurs, for example, when Y ∗it is an indicator for stigmatized behavior and stigma is increasing over

time (Pepper, 2001).

Assumption C-II. (i) qt ≥ qs when t > s, and (ii) pt = 0.

Defining M+
t = maxs≥t µs, it follows that

µt ≤ πt ≤
µt

M+
t

, t = 1, . . . , T. (4)

While the prevalence is still partially identified, a comparison of (2) and (4) shows that the upper

bound on πt is now larger. Under Assumption C-II the trend in prevalence between periods t and

t+ j is bounded as follows.

∆µt,j ≤ ∆πt,j ≤
µt+j

M+
t+j

− µt, if ∆µt,j ≥ 0,

∆µt,j

M+
t

≤ ∆πt,j ≤
µt+j

M+
t+j

− µt, if ∆µt,j < 0.

(5)

Thus, if the observed prevalence increases between periods t and t + j, then so does the true

prevalence. This is intuitive: if the observed trend is positive while the rate of false negatives
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increases (or at least, does not decrease), then the unobserved true prevalence must be increasing

as well. Pepper (2001), using an assumption comparable to C-II, derives a similar result. On the

other hand, when ∆µt,j < 0, equation (5) shows that the sign of ∆πt,j is not necessarily identified.

While the lower bound is negative, the upper bound could be positive. In this case, a decrease in

the observed trend results from either a decrease in the true prevalence, or from an increase in false

negative reporting that more than offsets a stable or even increasing true prevalence.

Case III. The third case we examine is the mirror image of Case II and assumes that the

probability of false negatives is non-increasing over time.

Assumption C-III. (i) qt ≤ qs when t > s, and (ii) pt = 0.

Defining M−t = maxs≤t µs, Assumption C-III implies that

µt ≤ πt ≤
µt

M−t
, t = 1, . . . , T. (6)

The true prevalence is again partially identified, but the bounds are farther apart compared to

Case I, where qt is constant over time. The bounds on the trend under Assumption C-III are given

below.

µt+j −
µt

M−t
≤ ∆πt,j ≤

∆µt,j

M−t+j
, if ∆µt,j ≥ 0,

µt+j −
µt

M−t
≤ ∆πt,j ≤ ∆µt,j , if ∆µt,j < 0.

(7)

Equation (7) shows that when the observed prevalence decreases, so does the true prevalence. This

occurs because the rate of false negative reporting cannot increase. Hence, a decrease in observed

prevalence has to be a result from a decrease in the actual prevalence. On the other hand, the

direction of the trend in the true unobserved prevalence is not necessarily identified when ∆µt,j ≥ 0.

An observed increase could result from an increase in the true prevalence but also from a decrease

in false negative reporting that more than offsets a stable or even decreasing true prevalence.

Case IV. The prior two cases are restrictive in terms of the structure they impose on qt. In

the fourth case we therefore assume that qt varies over time but remains within some distance of

an unknown “base rate” q̄. We will refer to this as the assumption of bounded variation.

Assumption C-IV. (i) For some x ∈ (0, 1] and q̄ ∈ [0, (1−M)/(1 + x)], qt satisfies (1 − x)q̄ ≤

qt ≤ (1 + x)q̄; and (ii) pt = 0.
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For the identified set of each qt to be non-empty, the base rate q̄ has to satisfy (1−x)q̄ ≤ 1−M .

Assumption C-IV, however, imposes the slightly stronger restriction that (1 + x)q̄ ≤ 1−M . This

ensures that a maximum (positive or negative) deviation of 100(x)% from the base rate is possible

in each time period. We also note that under Assumption C-IV, the case x = 1 leads to 0 ≤ qt ≤ 2q̄

for all t. Thus, the assumption that qt is time-varying but remains below some unknown, fixed

upper bound in each time period is subsumed under Assumption C-IV.

From equation (1) and the bounded variation in qt it follows that

µt
1− (1− x)q̄

≤ πt ≤
µt

1− (1 + x)q̄
.

Minimizing the lower bound and maximizing the upper bound over q̄ ∈ [0, (1−M)/(1 + x)] yields

the following prevalence bounds:

µt ≤ πt ≤
µt
M
. (8)

Perhaps surprisingly, these bounds are the same as under Assumption C-I. While allowing qt to

vary over time leads to a larger identified set, limiting the percentage deviation in each period

narrows the bounds to the point where these opposing effects exactly offset each other. For the

trend, define a := 1− x and b := 1 + x and let ∆πLt,j and ∆πUt,j denote the lower and upper bounds,

respectively. It is shown in the supplemental appendix that these bounds are given by

∆πLt,j =



µt+j

1−(a/b)(1−M) −
µt
M if aµt+j < bµt,

∆µt,j if aµt+j ≥ bµt, M > (b−a)
√
bµt

b
√
aµt+j−a

√
bµt
,

min
{

∆µt,j ,
µt+j

1−(a/b)(1−M) −
µt
M

}
if aµt+j ≥ bµt, M ≤ (b−a)

√
bµt

b
√
aµt+j−a

√
bµt
,

(9)

∆πUt,j =



µt+j

M − µt
1−(a/b)(1−M) if bµt+j ≥ aµt,

∆µt,j if bµt+j < aµt, M >
(b−a)
√
bµt+j

b
√
aµt−a

√
bµt+j

,

max
{

∆µt,j ,
µt+j

M − µt
1−(a/b)(1−M)

}
if bµt+j < aµt, M ≤

(b−a)
√
bµt+j

b
√
aµt−a

√
bµt+j

.

(10)

As an example, suppose that the observed prevalence increases between periods t and t+ j (so that

∆µt,j > 0 and bµt+j > aµt) but the increase is modest: aµt+j < bµt. From (9) and (10), it follows
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that

µt+j
1− (a/b)(1−M)

− µt
M
≤ ∆πt,j ≤

µt+j
M
− µt

1− (a/b)(1−M)
.

Comparing this with the trend bounds when qt is constant (cf. (3)), it is easy to show that the

lower bound is less than ∆µt,j , whereas the upper bound exceeds ∆µt,j/M . Thus, the identified

set is again larger than under Assumption C-I. We also note that a constant rate of false negatives

can be obtained as a limit of the bounded variation assumption when x ↓ 0. In this case a and b

both converge to 1 and the lower and upper bounds in (9) and (10) converge to the bounds in (3).

Case V. The final assumption we discuss is an extension of Case IV and allows for a non-zero

but constant rate of false positives p.

Assumption C-V. (i) For some x ∈ (0, 1) and q̄ ∈ [0, (1−M)/(1 + x)], qt satisfies

(1− x)q̄ ≤ qt ≤ (1 + x)q̄; and (ii) pt = p.

Since p ≤ µt for all t, the upper bound for p is m := mins µs. For a given value of p, we have

the following prevalence bounds:

µt − p
1− p− aq̄

≤ πt ≤
µt − p

1− p− bq̄
.

The lower bound is minimal when q̄ = 0 and the upper bound is maximal when q̄ = (1−M)/b, so

that

µt − p
1− p

≤ πt ≤
µt − p
M − p

.

The bounds on p shown above are decreasing in p, so that

µt −m
1−m

≤ πt ≤
µt
M

(11)

Comparing (8) and (11), we see that allowing false positives reduces the lower bound and results

in a larger identified set. The true prevalence may be below the observed prevalence due to the

possibility of false positives. Regarding the trend, we use (1) and observe that for any given value of

p, the difference ∆πt,j is maximized when (qt, qt+j) = (aq̄, bq̄) and minimized for (qt, qt+j) = (bq̄, aq̄).

Therefore,

µt+j − p
1− p− aq̄

− µt − p
1− p− bq̄

≤ ∆πt,j ≤
µt+j − p

1− p− bq̄
− µt − p

1− p− aq̄
(12)
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The lower bound on the trend is obtained by minimizing the left-hand side of (12) subject to

0 ≤ p ≤ m and 0 ≤ q̄ ≤ (1−M)/b. It is shown in the supplemental appendix that if ∆µt,j < 0 and

Assumption C-V holds, the lower bound is attained at q̄ = (1−M)/b and given by

∆πLt,j =



µt+j−m
c−m − µt−m

M−m if µt+j ≤ c−
(
c−m
M−m

)2
M +

(
c−m
M−m

)2
µt,

µt+j−p∗L
c−p∗L

− µt−p∗L
M−p∗L

if c−
(
c−m
M−m

)2
M +

(
c−m
M−m

)2
µt < µt+j < c−M

(
c
M

)2
+
(
c
M

)2
µt,

µt+j

c −
µt
M if µt+j ≥ c−M

(
c
M

)2
+
(
c
M

)2
µt,

(13)

where

p∗L =
c
√
M − µt −M

√
c− µt+j√

M − µt −
√
c− µt+j

.

When ∆µt,j ≥ 0, there is no convenient way to characterize ∆πLt,j , because it depends on the relative

magnitudes of (a, b, µt, µt+j ,m,M). Solutions to minimizing the left-hand side of (12), subject to

the boundary restrictions, can be found by inspecting solutions to the Kuhn-Tucker first-order

conditions.

The upper bound on the trend is found by maximizing the right-hand side of (12) subject to

0 ≤ p ≤ m and 0 ≤ q̄ ≤ (1 −M)/b. If Assumption C-V holds and ∆µt,j > 0, the upper bound is

attained at q̄ = (1−M)/b and given by

∆πUt,j =



µt+j

c −
µt
M if µt+j ≤M − c

(
M
c

)2
+
(
M
c

)2
µt,

µt+j−p∗L
c−p∗L

− µt−p∗L
M−p∗L

if M − c
(
M
c

)2
+
(
M
c

)2
µt < µt+j < M − c

(
M−m
c−m

)2
+
(
M−m
c−m

)2
µt,

µt+j−m
c−m − µt−m

M−m if µt+j ≥M − c
(
M−m
c−m

)2
+
(
M−m
c−m

)2
µt,

(14)

When ∆µt,j ≤ 0 instead, there is again no convenient expression for ∆πUt,j . The upper bound

can be found by inspecting solutions to the Kuhn-Tucker first-order conditions for maximizing the

right-hand side of (12), subject to the boundary restrictions.

In summary, we have presented the implications of different assumptions about pt and qt for the

identified sets of πt and ∆πt,j . The focus on conditional error probabilities is common in much of the

misclassification literature. In contrast, Pepper (2001) imposes restrictions on the joint distribution

of (Y ∗it , Yit). In our notation P (Y ∗it = 1, Yit = 0) = πtqt and P (Y ∗it = 0, Yit = 1) = (1−πt)qt. Pepper
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(2001) assumes that false negatives are at least as likely as false positives, so that

P (Y ∗it = 1, Yit = 0) ≥ P (Y ∗it = 0, Yit = 1). In addition, the total fraction of misclassified observations

is assumed to lie below some known upper bound:

P (Y ∗it = 1, Yit = 0) + P (Y ∗it = 0, Yit = 1) ≤ P.

In this case the true prevalence satisfies the bounds µt ≤ πt ≤ min {µt + P, 1}. Our results for the

prevalence provide a useful extension of Pepper’s (2001) bounds for two reasons. First, restrictions

on the joint distribution of (Y ∗it , Yit) are restrictions on the triple (πt, pt, qt), whereas we only restrict

(pt, qt) and investigate the implications for πt. Second, as noted by Pepper (2001), the upper bound

P on total false reports must either be known or a value must be assumed by the researcher. Setting

a reasonable value for P may be difficult in practice. The prevalence bounds we present here do

not depend on any unknown constants.

3. BAYESIAN INFERENCE

3.1. Nonidentification and the Posterior

We now consider Bayesian inference about the prevalence under Assumptions C-I through C-V. A

Bayesian model that is consistent with these assumptions incorporates the parameter bounds from

the previous section into the prior distribution. We initially assume that a simple random sample

is available in each time period. We postpone a discussion of more complex survey designs and the

use of sampling weights until section 3.3.

Let µ, π and q be T -dimensional parameter vectors with t-th elements µt, πt and qt, respectively,

and let p be a scalar (recall that under Assumptions C-I through C-V), p is constant over time). We

use Y = {Yit; i = 1, . . . , nt, t = 1, . . . , T} to denote the full set of observations across all individuals

and time periods. Let nt1 =
∑

i Yit and nt0 =
∑

i(1 − Yit) be the observed number of ones and

zeroes in time period t, respectively, and define nt = nt1 +nt0. If the samples from different periods

are independent and each individual only appears in a single period, the likelihood for the full

sample can be written as

f(Y|µ, π, q, p) =
T∏
t=1

µnt1
t (1− µt)nt0 . (15)
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The likelihood is a function of µ alone and therefore does not separately identify π, q and p.

Let f(µ, π) be a prior distribution. Since π is not identified, the joint posterior of (µ, π) can be

decomposed as (Kadane, 1974; Poirier, 1998)

f(µ, π|Y) ∝ f(Y|µ) · f(µ) · f(π|µ)

∝ f(µ|Y) · f(π|µ).

A similar expression holds for the joint posterior of µ, p and q. The marginal posterior of π is

obtained by integrating out µ:

f(π|Y) ∝
∫
f(µ|Y)f(π|µ)dµ.

Learning about π occurs indirectly through the conditional prior. As more data become available,

the posterior f(µ|Y) becomes more concentrated around some value, say µ̃. The marginal posterior

of π will then get close to the conditional prior f(π|µ̃) and uncertainty about π remains, even in

large samples. When information about the rates of misreporting is available, a researcher could

use it to specify a prior for (µ, p, q) instead of for (µ, π).3 A similar argument can be used to show

that in large samples the posterior of π again gets close to the conditional prior f(π|µ̃).

3.2. Prior Distributions

The prior distributions we propose are based on Assumptions C-I through C-V and specified in

terms of the misclassification rates. Since µ is identified, the prior f(µ) will have a negligible

influence on the posterior in large samples. However, as noted earlier, the priors f(p, q|µ) or f(π|µ)

remain influential in large samples and their specification needs to be considered carefully.

Case I. Under Assumption C-I we know that q∗ ≤ 1 −M . Without specific knowledge about

misreporting, a researcher might use a uniform prior on the interval [0, 1 −M ], conditional on µ.

The conditional prior of πt is then f(πt|µ) = µt/[(1 −M)π2t ] for µt ≤ πt ≤ µt/M . This density is

decreasing in πt, so that it is relatively more likely that the true prevalence is close to the observed

prevalence (i.e., the lower bound of the identified set). If instead small values of q∗ are believed to

3For example, Meyer et al. (2015) and Meyer et al. (2018) provide estimates of the amount of misreporting in
SNAP participation.
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be more likely than large values, we can use a power-type prior f(q∗|µ) = C(q∗)−α, where 0 < α < 1

and C is a normalizing constant. The induced prior for πt is then f(πt|µ) = Cµ1+αt /(π2t (πt−µt)α),

which also places a relatively high probability on values of πt near µt. Finally, suppose a researcher

wishes to use a (conditional) prior on πt directly. One possibility is the uniform distribution on

the interval [µt, µt/M ]. The induced prior for q∗ is then f(q∗|µ) = M/[(1 −M)(1 − q∗)2], which

puts a relatively high probability on values of q∗ near 1 −M . Thus, a uniform prior for the true

prevalence can be justified if we believe that the rate of false negative reporting is likely to be high.

Case II. When qt is assumed to be non-decreasing (Assumption C-II), we can construct a prior

of the form

f(q|µ) = f(q1|µ)
T∏
t=2

f(qt|qt−1, . . . , q1, µ)

= f(q1|µ)
T∏
t=2

f(qt|qt−1, µ).

The conditional priors f(qt|qt−1, . . . , q1, µ) for t ≥ 3 are chosen to be independent of qt−2, . . . , q1

because qt satisfies the restriction qt ≥ qt−1. The probability of a false negative in the first period

satisfies q1 ≤ 1−M , and we can specify a prior with support on this range, as in Case I. Similarly,

for t ≥ 2, we have the inequalities qt−1 ≤ qt ≤ 1−M+
t , and we choose conditional priors f(qt|qt−1, µ)

with support on this interval. If lower misreporting rates are considered more likely, we choose a

power-type distribution for each qt that puts more probability near the lower bound of the support

(as in Case I). An alternative choice for f(q|µ) is to use a series of uniform distributions on the

intervals discussed above. The choice of continuous distributions for f(qt|qt−1, µ), however, implies

that qt is strictly increasing with prior probability 1. This can result in a large probability of

unreasonably high values of qt in later time periods. To avoid this in the empirical application,

we therefore use a discrete-continuous mixture prior that assigns a positive probability to the false

negative rate staying the same between t − 1 and t. Specifically, if λ ∈ (0, 1) is the mixture

proportion, we use (for t = 2, . . . , T )

qt


= qt−1 with probability λ,

∼ f(qt|qt−1, µ) with probability 1− λ,
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where, as discussed above, f(qt|qt−1, µ) is a uniform or power-type distribution supported on the

interval [qt−1, 1−M+
t ].

Case III. If the rate of false-negative reporting is assumed to be non-increasing, we can con-

struct a prior in a way that resembles Case II:

f(q|µ) = f(qT |µ)
T−1∏
t=1

f(qT−t|qT−t+1, . . . , qT , µ)

= f(qT |µ)
T−1∏
t=1

f(qT−t|qT−t+1, µ).

For qT , we choose a prior (conditional on µ) that is supported on the interval [0, 1−M ]. For t < T ,

the misreporting rate satisfies qt+1 ≤ qt ≤ 1 − M−t , and we choose a distribution f(qt|qt+1, µ)

supported on that interval. If we want to ensure that there is a non-zero probability that qt stays

the same between successive periods, we can again use a mixture distribution:

qt


= qt+1 with probability λ,

∼ f(qt|qt+1, µ) with probability 1− λ,

where f(qt|qt+1, µ) is a continuous distribution supported on the interval [qt+1, 1−M−t ].

Cases IV-V. Under the assumption of bounded variation, the probability of a false negative in

period t can be written as qt = vtq̄, where 1− x ≤ vt ≤ 1 + x. We assume that x is chosen by the

researcher (e.g., x = 0.10 or x = 0.25). A prior for q can be obtained by combining a distribution

for q̄ with a distribution for (v1, . . . , vT ). Since q̄ ≤ (1 −M)/(1 + x), possible (conditional) priors

for q̄ are the uniform or power-type distribution on [0, (1 −M)/(1 + x)]. Candidate priors for vt

include the uniform distribution on the interval [1−x, 1+x] and the normal distribution with mean

1, truncated to the interval [1 − x, 1 + x]. Finally, under Assumption C-IV we simply set p = 0,

whereas under Assumption C-V we can use a uniform or power-type prior for p supported on the

interval [0,m].
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3.3. Survey Design and Sampling from the Posterior

Since we are interested in inference about population prevalence and trends, it is necessary to

consider the sampling design. In our empirical analysis, we use data Y from the NSDUH, which

does not constitute a random sample from the population and invalidates the likelihood function

in (15). Suppose, however, that a set of individual-level sampling weights wit is available, where

Nt =
∑nt

i=1wit is the size of the population at time t. Thus, observation Yit is thought to represent

wit individuals in the population. We assume that the size of the population and the weights

are known (as is typically done; incorporating uncertainty about the weights is beyond the scope

of this paper) and follow an approach proposed by Gunawan et al. (2017) to conduct Bayesian

inference about (µ, π, q). Their approach is based on data augmentation (Tanner and Wong, 1987)

and consists of two steps. First, use the sampling weights to generate pseudo-random samples from

the population. Second, use these samples to conduct inference about the parameters in the usual

Bayesian way.

To describe the steps involved in more detail, let Yt = (Y1t, . . . , Ynt,t) be the observed sample

at time t, so that Y = (Y1, . . . , YT ). Similarly, let Ỹt = (Ỹ1t, . . . , Ỹnt,t) be a random sample from

the population at time t, and let Ỹ = (Ỹ1, . . . , ỸT ). The vector of sampling weights at time t is

wt = (w1t, . . . , wnt,t) and we define w = (w1, . . . , wT ). Conditional on (Y,w), the variable Ỹit has

a Bernoulli distribution with parameter p̃t, where

p̃t = P (Ỹit = 1|Yt, wt) =

∑nt
j=1wjtYjt∑nt
j=1wjt

. (16)

The samples Ỹ are not observed. With data augmentation they are treated as an additional set of

unknown parameters. The posterior distribution of µ and Ỹ can be decomposed as

f(µ, Ỹ|Y,w) = f(µ|Ỹ,Y,w) · f(Ỹ|Y,w).

The second term on the right-hand side is the product of the Bernoulli distributions in (16). Also,

the conditional posterior of µ depends only on the random samples from the population, so that

f(µ|Ỹ,Y,w) = f(µ|Ỹ)
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∝ f(µ)f(Ỹ|µ)

∝ f(µ)
T∏
t=1

µñt1
t (1− µt)ñt0 , (17)

where ñt1 =
∑nt

i=1 Ỹit and ñt0 =
∑nt

i=1(1 − Ỹit) for t = 1, . . . , T . A random draw from the joint

posterior f(µ, Ỹ|Y,w) can now be generated by first drawing Ỹ from (16) and then drawing µ

from (17). Note that because the conditional posterior in (17) only depends on ñt1 and ñt0, it

is not necessary to sample each Ỹit individually. Instead, we can sample ñt1 from the binomial

distribution with parameters nt and p̃t. Assuming that a conditional prior f(q|µ) or f(p, q|µ) has

been specified, the steps to generate a sample from the posterior can now be summarized as follows.

Sampling from the posterior:

(1) For t = 1, . . . , T , sample values ñt1 from a binomial distribution with parameters nt and

p̃t, and calculate ñt0 = nt − ñt1;

(2) Given the sampled value (ñt1, ñt0), sample µ from the posterior distribution in (17);

(3) Given the sampled value µ:

i. (Cases I-IV) if p = 0, sample q from the conditional prior f(q|µ) and calculate

πt = µt/(1− qt) for t = 1, . . . , T ;

ii. (Case V) if p 6= 0, sample p and q from f(p, q|µ) and calculate πt = (µt−p)/(1−p−qt)

for t = 1, . . . , T ;

(4) Return to (1) and repeat.

In Section 4 we use a uniform prior for µ, so that step (2) involves generating a random draw from

a beta distribution with parameters (ñt1 + 1, ñt0 + 1). Finally, as referred to earlier, if the Bayesian

model specifies a conditional prior for π instead of q, step (3) is modified by sampling a value of

f(π|µ) and a value from f(p, q|π, µ).
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4. ESTIMATING PREVALENCE AND TREND OF OPIOID MISUSE

4.1. Observed Prevalence

For our empirical analysis we use publicly available data from the 2002-2014 waves of the National

Survey on Drug Use and Health (NSDUH).4 The NSDUH provides a nationally representative

sample of the non-institutionalized U.S. population aged 12 years old or older, and collects detailed

information about the use and misuse of various substances, including alcohol, tobacco, marijuana,

prescription drugs and illegal drugs. Data from the NSDUH is therefore a primary source of

information for looking at trends in the use and misuse of prescription opioids.

Our variable of interest is an indicator for misuse of prescription pain relievers during the past

year. The NSDUH imputed this indicator based on an individual’s response to the question “How

long has it been since you last used any prescription pain reliever that was not prescribed for you

or that you took only for the experience or feeling it caused?” We use the indicator and individual-

level sampling weights to estimate the population prevalence of past-year misuse, as well as the

one-year changes in prevalence.

The observed prevalence µt, based on the self-reported misuse indicator, is shown in Figure 1.

The left panel represents the population of individuals 18 and older. Between 2002 and 2007, the

estimated prevalence rose from 4.4% to 4.9%, an increase of more than 10%. Between 2007 and

2012, the prevalence fluctuated before starting a seemingly downward trend in 2013. The year 2011

seems to be an anomaly, with the prevalence temporarily dropping down to 4.1%. The reason for

this is unclear but we suspect it may result from some extreme values in the sampling weights.

The 95% confidence intervals for the observed prevalence in each year largely overlap, making it

difficult to draw any definite conclusions about a trend.

The right panel of Figure 1 shows the observed prevalence for white men, ages 26 to 49 years

old. This population is of interest because recent evidence suggests that middle-aged white men

are at a relatively high risk of prescription drug abuse (Case and Deaton, 2015). As is apparent

from the figure, the observed prevalence among middle-aged white men was substantially higher

than in the overall population 18 and older. It rose from about 5.5% in 2002 to 7.3% in 2010, an

4The data is available for download from https://www.datafiles.samhsa.gov. Public use files for 2015-2018 have
also been released, but we are not using these for our analysis due to a major survey redesign in 2015 that impacted
the prescription drug module of the questionnaire.
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increase of more than 30%. The prevalence may have started to decline in 2013 but, given the

width of the confidence intervals, it is hard to discern any clear trend. In Section 4.3, we apply our

Bayesian approach to the subsample of middle-aged white men. Results for several other subgroups

are given in the supplemental appendix.

4.2. Prior Specification

We use the prior distributions proposed and discussed in more detail in Section 3.2. For all power-

type distributions, we set α = 2. When qt is assumed to be constant over time, we use a uniform

and power distributions supported on the identified set. When qt is thought to be non-decreasing

(Assumption C-II) or non-increasing (Assumption C-III), we use a mixture prior: with probability

λ = 0.9, qt remains the same between adjacent periods; with probability 0.10, qt follows a uniform

or power distribution on the identified set, conditional on either qt−1 or qt+1. Under Assumption

C-IV, qt deviates at most 100(x)% from a base rate q̄, and we set x = 0.25. After sampling q̄

from a power distribution, we generate qt = vtq̄ by drawing vt from a distribution truncated to the

interval [0.75, 1.25]. Specifically, we use a uniform distribution and two normal distributions with

mean 1 and standard deviations 0.25 and 0.0625. These reflect increasingly strong beliefs that vt

is close to 1 or, equivalently, that qt is close to q̄. Finally, under Assumption C-V we augment the

prior with a power distribution for p, supported on the interval [0,m].

The following section shows estimates of the classical bounds and the Bayesian 95% highest

posterior density (HPD) intervals. Within these intervals, circles indicate the posterior mean.

While other summary statistics can be calculated from the posterior, we focus on HPD intervals

for the one-year trend, the posterior probability that this trend is positive, and a comparison of

the average prevalence between two sub-periods. This narrower focus allows us to compare results

across different prior distributions more easily. Additional posterior graphs and summary statistics

are collected in the supplemental appendix.
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4.3. Posterior Summaries for the True Prevalence

The posterior results presented here are based on 100, 000 simulated draws from the posterior

distribution.5 As noted in Section 3.3, generating a random draw from the posterior involves

generating a draw from the posterior f(µ|Y) followed by generating a random draw from the

conditional prior f(q|µ) or f(p, q|µ). When qt is assumed to be constant, Figure 2 shows that the

HPD intervals for the prevalence are much narrower than estimates of the identified set, especially

when a power prior is used for q∗. This is no longer the case for the one-year change in prevalence.

The classical bounds often lie within the limits of the HPD interval, though this may partially

occur because the estimates of the identified set do not account for uncertainty in the bounds.

Table 1 shows the posterior probabilities that a given one-year change in prevalence is positive.

For example, the probability that the true prevalence of misuse increased between 2002 and 2003 is

about 78% under both priors. The posterior probabilities and means seem robust to the choice of

the two priors for q∗ (uniform and power) that we consider here. There is strong evidence that the

prevalence increased—relative to the previous year—in 2006 and 2007, with posterior probabilities

of 95% and 82%, respectively. Until 2012 the prevalence shows no clear trend, but in 2013 and

2014 the probability of a positive one-year change drop below 14%. This suggests that the misuse

prevalence started a downward trend in those years.

Estimates of the identified sets and 95% HPD intervals for the trend are shown in Figure 3, when

qt is assumed to be either non-decreasing (Case II) or non-increasing (Case III). As expected, these

sets and intervals are much wider compared to the case where qt is constant. The striking feature

of this figure is that the Bayesian HPD intervals are now much narrower than the (estimated)

classical bounds. Comparing the left- and right-hand sides of Figure 3 we also see that the location

of the bounds strongly depends on whether false negatives are assumed to be (weakly) increasing

or decreasing.

As shown in Table 2, the posteriors under Case II and Case III again provide evidence that the

true prevalence increased in the periods 2005-2006 and 2006-2007. For example, assuming that qt

5The computational time is modest. For example, generating 100, 000 draws from the posterior under the as-
sumption that qt is constant takes around 180-190 seconds. The largest fraction of this time is used to simulate from
the (beta) posterior of µt (see Section 3.3). It is important to note that the marginal posterior is the same across all
joint posteriors of (µt, πt), so that the additional computing time to simulate samples from other posteriors is much
smaller. For example, generating samples of size 100, 000 each from 6 different posteriors takes around 220 seconds.
More than 85% of that time is used to generate the posterior draws of µt.
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year uniform prior power prior

2003 0.7757 0.7757
2004 0.7127 0.7127
2005 0.2185 0.2185
2006 0.9527 0.9527
2007 0.8151 0.8151
2008 0.1968 0.1968
2009 0.4197 0.4197
2010 0.6464 0.6464
2011 0.4791 0.4791
2012 0.5621 0.5621
2013 0.1361 0.1361
2014 0.1344 0.1344

Table 1: posterior probability of an increase in prevalence relative to the previous year (qt constant)

was non-decreasing, the posterior probability of an increase during the period 2005-2006 was 95.7%

with either a uniform or a power mixture component in the prior (recall that in Case II and III

we use priors for qt that are discrete-continuous mixtures). We also note that if qt is assumed to

be non-decreasing, the posterior probabilities of a positive one-year change are uniformly larger,

compared to when qt is non-increasing. This was to be expected. For example, from Figure 1

we see a large increase in observed prevalence from 2005 to 2006. If false negatives stayed the

same or increased in this period, as assumed in Case II, then the increase in true prevalence was

even higher. On the other hand, if false negatives (weakly) decreased, then part of the observed

increase in prevalence may be due to less misreporting, and the evidence for an increase in the true

prevalence is weaker (i.e., the probability of a positive trend is smaller).

Next, we consider the case where qt is assumed to deviate no more than 25% from an unknown

base rate q̄, with a constant rate of false positives p = 0 (Case IV) or p > 0 (Case V). Figure 4

shows the identified sets and HPD intervals for the trend in true prevalence. The identified sets

for the trend cover a wide range of positive and negative values and are uninformative about the

direction of the change in any given year. The 95% HPD intervals are again much narrower.

The results in Table 3 show strong evidence for an increase in misuse from 2005 to 2006.

Moreover, the posterior probability of an increase in the prevalence during that period becomes

larger as the prior distribution of vt, the factor measuring the deviation from the base rate, becomes

more concentrated around 1. For example, assuming that p > 0 as in Case V, the posterior
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year qt non-decreasing (Case II) qt non-increasing (Case III)
uniform power uniform power

2003 0.7961 0.7954 0.7139 0.7150
2004 0.7385 0.7378 0.6557 0.6565
2005 0.2810 0.2791 0.1990 0.1992
2006 0.9571 0.9570 0.8871 0.8881
2007 0.8313 0.8311 0.7526 0.7537
2008 0.2604 0.2593 0.1793 0.1793
2009 0.4666 0.4665 0.3839 0.3844
2010 0.6760 0.6760 0.5932 0.5942
2011 0.5216 0.5215 0.4368 0.4377
2012 0.5988 0.5985 0.5138 0.5154
2013 0.2002 0.1999 0.1235 0.1240
2014 0.2020 0.2009 0.1222 0.1225

Table 2: posterior probability of an increase in prevalence relative to the previous year; priors are
mixtures with a uniform or power component

probability of an increase in true prevalence between 2005 and 2006 is 90.4% under a uniform prior

for vt on the interval [0.75, 1.25]. If that prior changes to a truncated N(0, (0.0625)2) distribution,

the probability increases to 93.7%. Table 3 also shows evidence that the prevalence decreased after

2012. For example, allowing for false positives and depending on the prior, the probability of a

decrease in prevalence between 2012 and 2013 ranged from 82 to 85 percent.

So far, we have focused on the quantity ∆πt,1 = πt+1 − πt and the posterior probability that it

is positive. There are, of course, many other parameters that could be of interest. For example,

inspection of Figure 1 suggests that for middle-aged white men, the prevalence of misuse may have

been higher in the period 2006-2009 compared to 2002-2005, but was more or less stable in the

period 2010-2012. To assess the posterior evidence for this, we use the sample from the posterior

of πt and first calculate the difference between the average true prevalence during 2002-2005 (π̄0)

and the average during 2006-2009 (π̄1). Figure 5 shows kernel density estimates of the posterior of

π̄1 − π̄0, assuming bounded variation in qt and p = 0 (Case IV) or p > 0 (Case V). For Case IV in

the left graph, the prior of the base false negative rate q̄ is a power distribution. For Case V in the

right graph, the priors on both the base false negative rate and the false positive rate are power

distributions. Summary statistics of the posteriors are given in Table 4.

In both cases there is strong evidence that the average prevalence of prescription opioid misuse
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year (Case IV: p = 0) (Case V: p > 0)
uniform TN1 TN2 uniform TN1 TN2

2003 0.7256 0.7282 0.7560 0.7394 0.7414 0.7633
2004 0.6681 0.6713 0.6954 0.6793 0.6826 0.7011
2005 0.2742 0.2691 0.2426 0.2611 0.2571 0.2352
2006 0.8887 0.8933 0.9306 0.9043 0.9091 0.9365
2007 0.7519 0.7557 0.7883 0.7646 0.7669 0.7943
2008 0.2578 0.2537 0.2224 0.2455 0.2412 0.2146
2009 0.4356 0.4352 0.4273 0.4288 0.4272 0.4205
2010 0.6169 0.6192 0.6345 0.6204 0.6232 0.6373
2011 0.4851 0.4838 0.4813 0.4861 0.4849 0.4839
2012 0.5464 0.5481 0.5544 0.5494 0.5489 0.5542
2013 0.2002 0.1963 0.1613 0.1814 0.1808 0.1507
2014 0.2019 0.1972 0.1599 0.1864 0.1825 0.1553

Table 3: posterior probability of an increase in prevalence relative to the previous year. qt is
assumed not to deviate more than 25% from the base rate. The priors of the relative deviation vt
are uniform, N(1, (0.25)2) and N(1, (0.0625)2), all truncated to the interval [0.75, 1.25]. The latter
two distributions are labeled TN1 and TN2.

was higher in 2006-2009 than it was in 2002-2005. The posterior distributions are centered on a

mean difference of about 2.1 to 2.2 percentage points (this corresponds increases in the average

prevalence of roughly 23% under Assumption C-IV and 44% under Assumption C-V). The 95%

HPD intervals cover mostly positive values and the posterior probability of an increase in the

average prevalence exceeds 97% for both cases and all priors considered here. Results presented

in the supplemental appendix show that there is no evidence of a substantial change in prevalence

between 2006-2009 and 2010-2012. Moreover, the results reported here appear to be unique to

white men: individuals in the same age range who are not white men displayed a pattern of misuse

that was more constant over time.

Case Prior mean std. dev. 2.5% 50% 97.5% 95% HPD P (+)

IV
uniform 0.0211 0.0235 -0.0018 0.0166 0.0805 [-0.0062,0.0732] 0.9721
TN1 0.0209 0.0219 -0.0003 0.0167 0.0772 [-0.0050,0.0696] 0.9746
TN2 0.0205 0.0130 0.0066 0.0173 0.0573 [0.0038,0.0486] 0.9962

V
uniform 0.0217 0.0215 0.0033 0.0172 0.0774 [-0.0027,0.0661] 0.9817
TN1 0.0218 0.0208 0.0042 0.0173 0.0752 [-0.0004,0.0651] 0.9839
TN2 0.0211 0.0131 0.0070 0.0177 0.0580 [0.0038,0.0490] 0.9973

Table 4: posterior summary of the difference π̄1 − π̄0 in average prevalence between the periods
2006-2009 and 2002-2005. P (+) is the probability of an increase in average prevalence.
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5. CONCLUSION

Misclassification error is a frequent concern in self-reported survey data. Examples include reports

of participation in social programs and reports of certain types of behavior (e.g., substance misuse).

In this paper we analyze the implications of misclassification in the context of a repeated cross

section. We derive the identified sets for the means of a binary variable (the prevalence) as well

as changes in the mean over time (the trend). These sets are sensitive to what is assumed about

the probability of a misclassification error. We consider 5 different cases. In the first four cases,

motivated by the context of prescription opioid misuse, we assume that the probability of a false

positive (i.e, individuals incorrectly reporting misuse) is zero. In the fifth and final case, we allow

for the possibility of false positives.

A second contribution of this paper is that we show how to conduct Bayesian inference about

the true prevalence and trends when these parameters are only partially identified. We apply

this approach to an analysis of prescription opioid misuse, based on data from the NSDUH. The

observed prevalence for white, middle-aged men is relatively high, which is why we mostly restrict

our analysis to this population. We find that the estimated identified sets (intervals) are very

wide and have limited usefulness. The Bayesian HPD intervals, on the other hand, are typically

much narrower and provide information about the plausible values of the prevalence and the trend.

Under a variety of assumptions and prior distributions, we find evidence that the prevalence of

prescription opioid misuse increased several times between 2002 and 2014. An analysis of select

subgroups shows that these patterns are mostly unique to middle-aged white men.

Our paper highlights the strong impact of prior assumptions on identified sets and HPD inter-

vals. This is necessarily the case in models with unidentified or partially identified parameters. We

have experimented with a range of prior assumptions and prior distributions while remaining silent

about which of these are most appropriate or reasonable in the context of the opioid epidemic. A

related issue is that there may be substantial heterogeneity in misreporting behavior across the

population, and researchers may wish to use different priors for distinct subgroups. Even with very

little knowledge about the extent of misreporting, other outcomes such as emergency room visits or

drug-related fatalities could provide direct prior information about the true prevalence of misuse.

Since this information may have a significant impact on posterior inference, it is crucial to motivate
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and calibrate priors distributions carefully.

Finally, we have illustrated our approach by analyzing the prevalence of past-year misuse of

prescription opioids. For policy makers seeking to address this critical public health problem,

an analysis of additional, potentially misreported outcomes such as the incidence of misuse, is

likely to be of interest. Also, a natural next step is to determine the impact of misuse, at either

the individual, county or state level, on a range of health and socioeconomic outcomes. In the

supplemental appendix to this paper, we briefly discuss how our approach might be adapted to

inform estimation in these contexts. We aim to pursue these issues in more detail in future work.

Although bounding estimators and identified sets have long been the subject of academic pur-

suit, they have not been of much policy relevance, largely because the estimated bounds are often

so far apart. Our approach provides an avenue by which these bounds can be narrowed and thus

may become more informative for policy. We have illustrated their potential importance in the

context of the prevalence of opioid misuse, a critical policy issue for the last several years. The

more recent COVID-19 pandemic, however, further highlights the need to better estimate the true

prevalence of health conditions within a population. And while the advent of big data has allowed

us to greatly narrow traditional, frequentist confidence intervals, the fundamental issues of mis-

classification error, missing data and their implications for identifying population prevalence and

trends remain front and center. Thus, it is essential that further work apply and refine our methods

to give policy makers more accurate information on critical policy parameters and emerging health

issues.
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Figures

Figure 1: Past-year misuse of prescription pain relievers (2002-2014 NSDUH)

Figure 2: classical bounds and 95% HPD intervals for the prevalence and the one-year change in
prevalence (qt constant)
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Figure 3: classical bounds and 95% HPD intervals for the one-year change in prevalence. Left: qt
non-decreasing (Case II); right: qt non-increasing (Case III).

Figure 4: classical bounds and 95% HPD intervals for the one-year change in prevalence; qt is
assumed not to deviate more than 25% from the base rate. Left: p = 0; right: p > 0
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Figure 5: posterior of difference in average prevalence between the periods 2002-2005 and 2006-2009,
Case IV (left; pt = 0) and Case V (right; pt = p > 0).
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