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• The mean of a misclassified binary variable is in general only partially identified.
• The exact Bayesian posterior for the mean is derived for several intuitive priors.
• Posterior calculations are feasible without Markov chain Monte Carlo simulation.
• Parts of the identified set for the mean are a posteriori more likely than others.
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a b s t r a c t

We consider Bayesian inference about the mean of a binary variable that is subject to misclassification
error. If the error probabilities are not known, or cannot be estimated, the parameter is only partially
identified. For several reasonable and intuitive prior distributions of the misclassification probabilities,
we derive new analytical expressions for the posterior distribution. Our results circumvent the need for
Markov chain Monte Carlo simulation. The priors we use lead to regions in the identified set that are a
posteriori more likely than others.

© 2017 Elsevier B.V. All rights reserved.
1. Introduction

We consider the problem of inference for the population
mean of a binary variable that suffers from measurement error.
That is, there is some nonzero probability that observations are
misclassified. This type ofmodel has a long history in both statistics
and econometrics (e.g. Neyman, 1950; Bross, 1954; Aigner, 1973).
If the misclassification rates are known, the mean is identified and
can be estimatedwithout bias. If the rates are unknown but a set of
correctly classified observations is available (i.e., validation data),
the mean is also identified and estimable (Tenenbein, 1970). In the
absence of validation data, however, it is well known that under
mild conditions the populationmean can be non-trivially bounded.
It is then said to be partially identified and the collection of feasible
parameter values is called the identified set. The bounds of this set
can usually be estimated consistently.
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In the classical approach to inference (e.g. Bollinger, 1996;
Imbens and Manski, 2004; Molinari, 2008), a confidence interval
for the parameter takes the form of the estimated bounds,
plus a multiple of their standard errors. The resulting region in
the parameter space, however, can be quite wide and classical
inference provides no additional information about the location
of the parameter within the bounds. In particular applications, a
researcher’s intuition or knowledge of previous studies may lead
him or her to believe that the true parameter is, for example,
likely to be closer to the estimated upper bound. However, such
prior knowledge cannot be easily exploited or incorporated into a
classical analysis.

In this paper we take a Bayesian approach to inference. Our
analysis relies on key insights of Poirier (1998) and Moon and
Schorfheide (2012). Given that some parameters are not identified,
extra care must be given to the specification of prior distributions,
since even asymptotically these priors will remain an important
component of posterior inference. Some previous Bayesian studies
ofmisclassification achieved identification through the prior (Gaba
and Winkler, 1992; Joseph et al., 1995; Evans et al., 1996;

http://dx.doi.org/10.1016/j.econlet.2017.04.011
http://www.elsevier.com/locate/ecolet
http://www.elsevier.com/locate/ecolet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.econlet.2017.04.011&domain=pdf
mailto:mnvanhas@uncg.edu
http://dx.doi.org/10.1016/j.econlet.2017.04.011


C.R. Bollinger, M. van Hasselt / Economics Letters 156 (2017) 68–73 69
Rahme et al., 2000). In contrast, we consider a variety of priors
that explicitly incorporate the parameter bounds inherent in the
model. These priors can be considered intermediate between
weak information leading only to partial identification, and strong
information leading to full identification. A second contribution
is that we derive exact, analytical expressions for the posterior
and therefore do not have to rely on Markov chain Monte Carlo
sampling.

Although sensitivity to the prior distribution is sometimes
seen as a weakness of the Bayesian approach, we believe that it
facilitates a sensitivity analysis with respect to assumptions about
misclassification rates. The analysis examines how additional prior
information about these rates affectswhat the researcher can learn
about the population mean. Of course, the identification problem
is by no means eliminated through the use of a Bayesian prior.
Instead, the prior allows us to easily incorporate varying amounts
of information and examine the effect on posterior inferences. Our
results show that under a number of reasonable prior assumptions,
the posterior is far from uniform and, relative to a classical
analysis, provides additional information about the location of the
population mean within the identified set.

The remainder of this paper is organized as follows: Section 2
discusses misclassification and partial identification, as well as a
number of intuitive prior distributions that range from less to
more informative about the probability of amisclassification error.
The resulting finite-sample posterior distributions are presented
in Section 3. Section 4 provides concluding remarks. Derivations of
some of the results are collected in the Appendix.

2. The model

2.1. Misclassification and parameter bounds

Let Z ∈ {0, 1} be a binary random variable with P(Z = 1) = π .
Instead of observing Z , we observe X ∈ {0, 1}, which may suffer
from misclassification error:

P(X = 1|Z) = p(1 − Z) + (1 − q)Z . (1)

Here, p is the probability of a false positive, whereas q is the
probability of a false negative. We assume, as is typical in the
literature, that p + q < 1. This ensures that the covariance
between Z and X is positive. The mean of X can be written as
µ = π(1 − q) + (1 − π)p, which implies the following bounds
on the misclassification rates:

0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ. (2)

The parameter π , however, can take values over the entire unit
interval. For example, if p = µ, then π = 0, regardless of the value
of q. Similarly, if q = 1 − µ, then π = 1. Hence, π is completely
unidentified.

Given a random sample X = (X1, . . . , Xn), let n1 =
n

i=1 Xi
and n0 = n − n1 be the observed number of ones and zeros,
respectively. The likelihood f (X|µ) = µn1(1 − µ)n0 is a function
of µ only, so that

f (π, µ|X) ∝ f (X|µ) · f (µ) · f (π |µ)

∝ f (µ|X) · f (π |µ), (3)

and the posterior is the product of the marginal posterior of the
identified parameter and the conditional prior of the unidentified
parameter (Poirier, 1998; Moon and Schorfheide, 2012). If the
true value of the population mean of X is µ0, then under
standard regularity conditions the posterior distribution of µ will
increasingly concentrate around µ0 as n → ∞ (e.g. Heyde and
Johnstone, 1979; Chen, 1985). This has an important implication
for the posterior of π . Eq. (3) implies that

f (π |X) =


f (π, µ|X)dµ

∝


f (µ|X)f (π |µ)dµ,

so that the posterior of π is a mixture of conditional priors. As the
sample size increases, themixing distribution f (µ|X) – namely the
marginal posterior of µ – becomes asymptotically degenerate at
µ = µ0 and f (π |X) converges to f (π |µ0).1

2.2. Prior distributions

In this section we examine a number of prior distributions
that are increasingly informative about the misclassification rates.
The first prior is a uniform distribution for µ, combined with
conditional priors p|µ ∼ U(0, µ) and q|µ ∼ U(0, 1 − µ) that
are uniform on the identified set:

f1(µ, p, q) =
1

µ(1 − µ)
1{0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ}. (4)

It follows that f1(µ, p, π) =
µ−p

µ(1−µ)π2 . Using the relation between
µ, p and q, and letting q range from 0 to 1 − µ, it follows that
max {0, (µ − π)/(1 − π)} ≤ p ≤ µ. Since f1(π |µ) = f1(π, µ)
(because µ has a uniform prior), we find

f1(π |µ) = 1{π > µ}

 µ

0

(µ − p)
µ(1 − µ)π2

dp

+ 1{π ≤ µ}

 µ

µ−π

1−π

(µ − p)
µ(1 − µ)π2

dp

= 1{π > µ}
µ

2(1 − µ)π2
+ 1{π ≤ µ}

(1 − µ)

2µ(1 − π)2
. (5)

The second prior expresses the belief that, conditional on µ,
lower misclassification rates are more likely than higher ones. We
combine a uniformprior forµwith ‘power-type’ conditional priors
for p and q (proportional to p−1/2 and q−1/2 on the identified set).
This yields the prior

f2(µ, p, q) =
1

4
√

µ(1 − µ)pq
1{0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ}. (6)

This implies the following joint prior distribution for (µ, p, π):

f2(µ, p, π) =
1

4π
√

πµ(1 − µ)
·

µ − p
p2(1 − π) + p(π − µ)

,

where max{0, (µ − π)/(1 − π)} ≤ p ≤ µ. It is shown in the
Appendix that

f2(π |µ) =
µ(1 − π) +

1
2 (π − µ)

4π(1 − π)
√

π(1 − π)µ(1 − µ)

× log


π−µ+2(1−π)µ+2
√

π(1−π)µ(1−µ)

|π−µ|


−

1
4π(1 − π)

. (7)

The third prior expresses the belief that, with probability λ, the
misclassification error is symmetric. In that case, p = q and false
positive and false negatives are equally likely. We maintain the

1 The argument given here also applies to the unidentified parameter p and q. In
large samples f (p|X) and f (q|X) will converge to f (p|µ0) and f (q|µ0), respectively.
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Fig. 1. Finite-sample posteriors f1(π |X) and conditional prior f1(π |µ = 0.25).
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Fig. 2. Finite-sample posteriors f2(π |X) and conditional prior f2(π |µ = 0.25).
assumption that Z and X are positively correlated, so that p < 1
2 .

From µ = (1 − π)p + π(1 − p), it now follows that π ∈ [0, µ]

if µ < 1
2 and π ∈ [µ, 1] if µ > 1

2 .
2 From (2) it also follows

that p ≤ min{µ, 1 − µ}. Thus, symmetry of the misclassification
error shrinks the identified set. A conditional prior that imposes
the restriction p = q and is uniform over the identified set is

f̃ (p, q|µ) =
1
µ
1


p = q, p ≤ µ < 1

2


+

1
1 − µ

1

p = q,

1
2

< µ ≤ 1 − p


. (8)

Using a uniform marginal prior for µ, the joint prior is

f3(µ, p, q) =
λ

µ
1


p = q, p ≤ µ < 1

2


+

λ

1 − µ
1


p = q,

1
2

< µ ≤ 1 − p


+
(1 − λ)

µ(1 − µ)
1{0 ≤ p ≤ µ, 0 ≤ q ≤ 1 − µ}. (9)

Thus, with probability λ the misclassification error is believed to
be symmetric (and p has a uniform distribution over the identified
set), and with probability (1 − λ) the error is asymmetric. Using a

2 Since π = (µ − p)/(1 − 2p), it follows that π is identified and equal to 1
2 if

µ =
1
2 . Identification of π in this case hinges on p < 1

2 being a strict inequality. If
p =

1
2 is allowed, this result breaks down.
change of variables to (π, µ), it can be shown that

f3(π |µ) =
λ(1 − 2µ)

µ(1 − 2π)2
1


π ≤ µ < 1

2


+

λ(2µ − 1)
(1 − µ)(1 − 2π)2

1
 1
2 < µ ≤ π


+

(1 − λ)µ

2(1 − µ)π2
1{π > µ}

+
(1 − λ)(1 − µ)

2µ(1 − π)2
1{π ≤ µ}. (10)

3. Main results

Wenowpresent analytical results for the finite-sample posteri-
ors of π , using the priors discussed in the previous section. Deriva-
tions can be found in the Appendix. The posterior corresponding to
f1(µ, p, q) in Eq. (4) is given by

f1(π |X) =
1

2π2


n1 + 1
n0


In1+2,n0(π)

+
1

2(1 − π)2


n0 + 1
n1


(1 − In1,n0+2(π)), (11)

where Ba,b is the Beta function and Ia,b(t) is the cumulative distri-
bution function of the Beta distribution with parameters a and b.3

3 The function Iα,β (t) is also referred to as the regularized Beta function
(Abramowitz and Stegun, 1964).
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Fig. 3. Finite-sample posteriors f3(π |X) for different probabilities (λ) of error symmetry; n = 20.
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Fig. 4. Finite-sample posteriors f3(π |X) for different probabilities (λ) of error symmetry; n = 100.
For prior f2(µ, p, q) in Eq. (6), the posterior of π is

f2(π |X) =
1

Bn1+1,n0+1

 1

0
µn1(1 − µ)n0 f2(π |µ)dµ, (12)

where f2(π |µ) is given in Eq. (7). This expression cannot be sim-
plified any further. Finally, using the mixture prior in Eq. (9), the
corresponding posterior of π is a mixture distribution

f3(π |X) = λf̃ (π |X) + (1 − λ)f1(π |X), (13)

where f1(π |X) is the posterior in Eq. (11), f̃ (π |X) is given by

f̃ (π |X) =



1
(1 − 2π)2


n + 1
n1


In1,n0+1


π,

1
2


− 2In1+1,n0+1


π,

1
2


if π <

1
2

1
(1 − 2π)2


2


n1 + 1
n0


In1+2,n0


1
2
, π


−


n + 1
n0


In1+1,n0


1
2
, π


if π >

1
2
,

and Ia,b(s, t) = Ia,b(t) − Ia,b(s).
Graphs of the posteriors f1(π |X) and f2(π |X) in Eqs. (11) and

(12) are given in Figs. 1 and 2. We plot the finite-sample posteriors
for sample sizes n = 20 and n = 100, when the observed
fraction of ones is 0.25, as well as the conditional priors of π given
µ = 0.25. The latter represent the asymptotic posteriors when
µ0 = 0.25. Fig. 1 shows that the posterior f1(π |X) is informative in
that it places higher probability on values ofπ that are close to 0.25
and lower probability on values close to 0 or 1. Fig. 2 shows that
under the more informative prior in Eq. (6), the posterior f2(π |X)
becomes more concentrated around 0.25.

Figs. 3 and 4 show the mixture posterior f3(π |X) for sample
sizes n = 20 and n = 100, respectively. Within each figure, we
consider a range of prior probabilities that the misclassification
error is symmetric (λ = 0.5, 0.75, 0.95). The figures clearly
show that as λ increases, the posterior distribution puts more and
more mass on values less than 0.25. This occurs because under
symmetry, the restrictionπ ≤ µmust hold. In the limit as n → ∞

(see Fig. 5), the posterior becomes discontinuous atµ0 = 0.25 and
values of π less than µ0 are much more likely than values greater
than µ0.

The classical bounding results do not reveal anything about
the location of the parameter within the identified set. Under the
posteriors derived here, however, certain parts of the identified
set are more likely than others. Also, as expected, the use of
stronger information about misclassification rates will lead to a
more concentrated posterior distribution.

4. Discussion

In this paper we have derived a number of exact, finite-sample
posterior distributions for the mean of a misclassified binary vari-
able. Although this parameter is not identified (unless the prob-
abilities of misclassification errors are known or consistently es-
timable), the posteriors provide non-trivial information evenwhen
weak priors are specified. Classical analyses often consider how
the identified set changes when certain model assumptions are
either imposed or relaxed. In contrast, a Bayesian analysis allows
researchers to impose or relax assumptions in a probabilistic and
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Fig. 5. Asymptotic posterior f3(π |µ = 0.25) for different probabilities (λ) of error symmetry.
hence, more continuous manner. This facilitates sensitivity anal-
yses and adds to our understanding of the mapping between as-
sumptions and identification.
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Appendix. Calculating the posteriors

The marginal likelihood f (X) is
 1
0 µn1(1 − µ)n0dµ =

Bn1+1,n0+1, so that

f1(π |X) =
1

Bn1+1,n0+1

 1

0
µn1(1 − µ)n0 f1(π |µ)dµ.

Substituting Eq. (5) into this expression, we find

f1(π |X) =
1

2π2Bn1+1,n0+1

 π

0
µn1+1(1 − µ)n0−1dµ

+
1

2(1 − π)2Bn1+1,n0+1

 1

π

µn1−1(1 − µ)n0+1dµ

=
Bn1+2,n0

2π2Bn1+1,n0+1
In1+2,n0(π)

+
Bn1,n0+2

2(1 − π2)Bn1+1,n0+1
(1 − In1,n0+2(π)).

Substituting Bn1+2,n0 = Bn1+1,n0+1(n1 + 1)/n0 and Bn1,n0+2 =

Bn1+1,n0+1(n0 + 1)/n1 into the previous equation yields the
posterior in Eq. (11).

Next, we turn to f2(π |µ). Given the uniformprior forµ, we have
f2(π |µ) = f2(µ, π). Under the restrictions max{0, (µ − π)/(1 −

π)} ≤ p ≤ µ, it follows that

f2(π |µ) = 1{π > µ}

 µ

0
f2(µ, p, π)dp

+ 1{π ≤ µ}

 µ

(µ−π)/(1−π)

f3(µ, p, π)dp

=
1{π > µ}

4π
√

πµ(1 − µ)

 µ

0

µ − p
p2(1 − π) + p(π − µ)

dp

+
1{π ≤ µ}

4π
√

πµ(1 − µ)

×

 µ

(µ−π)/(1−π)

µ − p
p2(1 − π) + p(π − µ)

dp.
The two integrals on the right-hand side can be calculated using
the relation

(a − x)
√
bx2 + cx

dx = log


1
2 c+bx
√
b

+


bx2 + cx


×


a

√
b

+
c

2b3/2


−

√
bx2 + cx

b
.

Substituting a = µ, b = 1 − π , and c = π − µ and simplifying, it
follows that

f2(π |µ) =
µ(1 − π) +

1
2 (π − µ)

4π(1 − π)
√

π(1 − π)µ(1 − µ)

× log


π−µ+2(1−π)µ+2
√

π(1−π)µ(1−µ)

|π−µ|


−

1
4π(1 − π)

,

which is Eq. (7).
Finally, consider f3(π |X). We only need to find the marginal

posterior of π under symmetry (p = q). From Eq. (8) and a change
of variables, it follows that

f̃ (π |µ) =
(1 − 2µ)

µ(1 − 2π)2
1


π ≤ µ < 1

2


+

(2µ − 1)
(1 − µ)(1 − 2π)2

1
 1
2 < µ ≤ π


.

First, consider the case π < 1
2 . Then

f̃ (π |X) =
1

f (X)

 1/2

π

(1 − 2µ)

µ(1 − 2π)2
µn1(1 − µ)n0dµ

=
1

Bn1+1,n0+1(1 − 2π)2

 1/2

π

µn1−1(1 − µ)n0dµ

−
2

Bn1+1,n0+1(1 − 2π)2

 1/2

π

µn1(1 − µ)n0dµ

=
1

(1 − 2π)2


Bn1,n0+1

Bn1+1,n0+1
In1,n0+1


π, 1

2


− 2In1+1,n0+1


π, 1

2

 
.

Using the fact that Bn1+1,n0+1 = n1Bn1,n0+1/(n + 1), we find that
for π < 1

2 :

f̃ (π |X) =
1

(1 − 2π)2


n + 1
n1


In1,n0+1


π, 1

2


− 2In1+1,n0+1


π, 1

2

 
.



C.R. Bollinger, M. van Hasselt / Economics Letters 156 (2017) 68–73 73
If π > 1
2 , then

f̃ (π |X) =
1

(1 − 2π)2Bn1+1,n0+1

 π

1/2
µn1(1 − µ)n0

(2µ − 1)
(1 − µ)

dµ

=
2

(1 − 2π)2Bn1+1,n0+1

 π

1/2
µn1+1(1 − µ)n0−1dµ

−
1

(1 − 2π)2Bn1+1,n0+1

 π

1/2
µn1(1 − µ)n0−1dµ

=
1

(1 − 2π)2


2Bn1+2,n0

Bn1+1,n0+1
In1+2,n0

 1
2 , π


−

Bn1+1,n0

Bn1+1,n0+1
In1+1,n0

 1
2 , π


.

Since Bn1+2,n0 = (n1 + 1)Bn1+1,n0+1/n0 and Bn1+1,n+1 =

n0Bn1+1,n0/(n + 1), it follows that for π > 1
2 :

f̃ (π |X) =
1

(1 − 2π)2


2


n1 + 1
n0


In1+2,n0

 1
2 , π


−


n + 1
n0


In1+1,n0

 1
2 , π


,

which completes the derivation of f̃ (π |X) in Eq. (13).
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