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Abstract 

In this paper I examine identification and estimation of mean regression models when 
a binary regressor is mismeasured. I prove that bounds for the model parameters are 
identified and provide simple estimators which are consistent and asymptotically normal. 
When stronger prior information about the probability of misclassification is available, 
the bounds can be made tighter. Again, a simple estimator for these cases is provided. All 
results apply to parametric and nonparametric models. The paper concludes with a short 
empirical example. 
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1. Introduc~an 

The topic of  measurement error  has a long history in econometrics. In 
particular, it is well-known that when one or  more  regressors in a linear model 
are mismeasured, least squares estimation is generally not  consistent. However,  
most  of  the literature has focused upon a continuous regressor. In this paper, 
I examine identification and estimation of  bounds for the model parameters 
when the mismeasured regressor is a binary classification variable. 

The model is formally represented by Model 1: 

Y = - a + p Z + u ,  E [ u l  Z ]  = 0 ,  (I) 
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Pr [X = 0 I Z, Y-I =(1 - p )  (1 - Z )  + qZ ,  

P r [ X = I I Z ,  Y ] = ( I - q )  Z + p ( I - Z ) ,  

Z ~ Bernoulli(Pz) with 0 < Pz < 1, 

p + q < l .  

(2) 

(3) 

(4) 

(5) 

The term p is the probability of reporting X = 1 when Z = 0, and q is the 
probability of reporting X = 0 when Z = 1. The researcher is interested in the 
parameters (c¢, p), but is only able to observe Y, the dependent variable, and X, 
the mismeasured version of Z. The focus in this paper will be on identification; 
hence the discussion focuses on population relationships. 

Aigner (1973) showed that in this model, the least squares regression of Y on 
X does not yield consistent estimates of the parameters (~, p). The estimates will 
be asymptotically biased toward zero. Knowledge of p and q can be used to 
obtain consistent estimates (see Freeman, 1984; Aigner, 1973). Frisch (1934) 
showed that in a classical errors-in-variables model with one regressor (where 
the regressor is continuous and the error term is additive white noise), bounds 
for the parameters are identified. Klepper and Learner (1984) generalized the 
result to the case where k continuous regressors are mismeasured. Kiepper 
{1988) derives bounds for Model I with the additional assumption that 
p = q < 0.5. The assumption that p = q is rather strong. Recent empirical 
evidence using validation data to estimate misclassification rates in survey data 
suggests that the assumption fails in practice (Freeman, 1984; Poterba and 
Summers, 1986; Mathiowetz and Duncan, 1988; Boilinger and David, 1993). 

in Section 2, I derive bounds for/~ and the other parameters in Model 
I .  Klepper's (1988) results cannot be obtained by simply substituting p = q into 
the bounds derived here. In fact, the assumption p = q is strong prior know- 
ledge, and is fully utilized by Klepper, resulting in tighter bounds. In Section 3, 
! derive bounds when additional information, in the form of bounds on p and q, 
is available, in Section 4, I apply the results to bound the union wage differen- 
tial. Proofs of all theorems and lemmas can be found in the Appendix. 

2. Bounds for Model I 

The discussion will focus on Model I, but the results can easily be extended to 
include linear models with other regressors which may be mismeasured also. 
The results can also be extended to nonparametric models with other correctly 
measured regressors. 

The implications of assumption (5) and conditioning on Y in Eqs. {2) and {3) 
are worth examining. Assumption (5) insures that the misclassification is not so 
bad that X is independent of Z (the case where p + q = 1), or that the effective 
definition of the classification has been reversed (when p + q > 1) which would 
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occur if more than half the data were mismeasured. This also results in the 
covariance between X and Z being positive. An anonymous referee pointed out 
that a somewhat stronger assumption requiring p < ½ and q < ½ is reasonable. 
This assumption is not necessary for the result in Theorem 1, and can be 
imposed utilizing Theorems 2, 3, or 4 for various cases. Conditioning on Y in 
Eqs. (2) and (3) implies that the error process generating X is independent from 
the residual error, u, in the structural equation. If this assumption fails, the 
bounds derived here do not hold. Krasker and Pratt (1986) and Erikson (1993) 
study the case where the measurement error is not independent of the regression 
error in a classical errors-in-variables model. 

It is helpful to establish some notation. Let b be the slope from the least 
squares projection of Y on X; let d be the inverse of the slope from the least 
squares projection of X on Y; let Px be the marginal probability X = 1; let 
p2xv be the squared correlation between X and Y. The variances of Y and X are 
represented by tr~ and a~, respectively. The covariance of Y and X is represented 
by axr- Throughout this paper b, d, Px, tr2, t72, and trxr are all observable. 

From the assumptions of the model, restrictions on unobservable parameters 
are known. From (4) and (5), respectively, 0 < Pz < 1 and p + q < 1. By 
definition probabilities are nonnegative: p/> 0 and q >t 0. Variances are also 
nonnegative: o,2/> 0 and ,r 2 1> 0. These restrictions, combined with the first and 
second moments of the model and information about the error process from 
Eqs. (2) and (3) imply a set of constraints on the unknown structural parameters 
which give rise to Theorem 1. For the remainder of the paper I assume, without 
loss of generality, that fl >/0, since it can be shown that sign(fl)= sign(b) 
= sign(d), and i f / / >  0, then 0 < b < d. 

Theorem 1. Given Model L i f  fl > O, then 

0 < b ~< fl ~< max {d" Px + b-(l - Px) ,d ' ( l  - Px) + b 'Px} ,  

ElY]  - d ' e x  ~< • ~< E[Y] - b .ex ,  

0 <~ p <<, Px'(1 - P~r), 

0 .< q -<< (1 - P~c) (l - p~cy). 

(6) 

(7) 

(8) 

(9) 

l f  fl = O, then b = fl = O. These bounds utilize all information contained in the first 
and second moments of  the observable data and are tight relative to this informa- 
tion. 

Bounds are also available for Pz and ~ ,  but are not presented here. The lower 
bound on fl was originally shown by Aigner (1973). I give an alternative proof 
and show that it is tight. The main focus of the paper will be on the upper bound. 

The identification failure in any errors in variables model is due to the 
inability to differentiate between measurement error and the residual error term 
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u. The proof of Theorem 1 has two main parts. First, establish the maximum 
amount  of measurement error which can feasibly be present in the system. Then, 
find the allocation of that error to the two distinct types of measurement error 
[errors of classifying O's as l 's (represented by p) and errors of classifying l 's as 
O's (represented by q)] which gives the largest feasible//. 

To establish the maximum feasible amount  of measurement error, first note 
that Model I can be rewritten as a classical errors-in-variables model. The 
mismeasured regressor is now Z* = t~ + 7 Z  (where 6 = - p and ? = 1 - p - q), 
with X = Z* + e, where e is uncorrelated with Z. The regression slope is now 
0 = ill?. It is well known that 0 is bounded by b and d. The term 0 is an index of 
the amount of measurement error in the system: for a given/~, a larger 0 implies 
larger p and/or q. The case where 0 --- d represents the maximal amount  of 
measurement error. 

Given the amount  of measurement error, as indexed by 0, the allocation of 
this error to p and q is determined. From the classical errors in variables model, 
it can be shown that Vie]  = F I X ]  (1 - b/O). Here, the variance o f t  can also be 
written as a function o fp  and q (see Lemma 3). These two equations can then be 
used to describe the set of feasible values of p and q given the amount of 
measurement error as indexed by 0. The largest feasible fl over the set of feasible 
values for 0, p, and q can then be found. 

If P x  > ½, then the upper bound is associated with the case where p = 0 and 
q = (1 - Px) (1 - P:~r). If P x  < ½, then the upper bound is associated with 
q = 0 and p = Px(l - p2xr). Thus the upper bound is associated with a lopsided 
allocation of the total feasible measurement error. This lopsided error is misclas- 
sification from the largest of the two classes to the smallest. Further, the values 
of p and q which are associated with the upper bound on/~ are both less than 
½. Therefore, restricting p and q to be both less than ½ would not alter the bounds 
for/L 

An anonymous referee has pointed out that a parsimonious representation of 
the relationship between/L b, p, and q is 

P x ( l  - Px){l - p - q) 
# = (lO) 

( P x -  pXI - P ~ -  q) 

Further, the referee remarks that the upper bound on fl given that p and q are 
restricted to some set is the maximum of Eq. (10) on that set. The restriction that 
p + q be less than one, or even that p < ½ and q < ½ is not sufficient to arrive at 
a bound. Even the result in Lemma 1 is not sufficient since p can be arbitrarily 
close to Px and q can be arbitrarily close to 1 - Px. The result in Lemma 
3 derives a more restrictive set for the feasible values of p and q utilizing the 
information in the variance of Y. Note that this set is a function of//. While it is 
possible to use the approach suggested by the referee, the approach here yields 
a simpler expression for the feasible values of p and q. Additionally, the 
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approach taken here highlights the fact that not only does the amount  of error, 
as measured by the term 0, impact the bounds, but the allocation of that error to 
errors of omission or errors of commission is of critical importance also. 

The bounds presented here are for a simple model with one regressor. 
Extending the bounds to apply to a linear model with other regressors is 
relatively straightforward for both the case where the other regressors are 
correctly measured, and the ease where the other regressors may have classical 
measurement error. The details of that extension can be found in Bollinger 
(1993). 

3. Impos ing  other informat ion  

In Section 2, I imposed the relatively weak assumption that p + q < 1. 
However, in many cases stronger information may be available. This informa- 
tion may take many forms. The cases I will discuss here are cases where there 
exist known M and K such that p ~< M and q ~< K or where there exist known 
m and k such that p >I m and q >t k. Other cases are discussed in Bollinger (1993). 
The restrictions that p ~< M and q ~< K insure a stronger relation, that is less 
measurement error, between X and Z,  and will only affect the upper bound on 

since the lower bound on fl is achieved when no measurement error is present. 
However, the restriction that p >/m and q >t k will affect both the upper and the 
lower bound on ft. 

Since the general case derived above implies that p <~ P x ( 1 -  P~rr) and 
q <~(1 - Px)(l - p2r) clearly any additional information about p and q must 
improve on at least one of these bounds. In particular, since the upper bound 
is associated with either the case where p = 0 and q ( 1 -  Px) (1 -P~tr)  
when Px > ½, or the case where p = Px(l - pZr) and q = 0 when Px < ½, the 
restriction that p ~< M and q <~ K must improve on the case associated 
with the general upper bound. Hence, if Px > ½, then K must be less than 
(1 - Px)(1 - p2) ;  if Px < ½, then M must be less than Px(1 - P~v). 

if p ~< M < Px(1 - P~tr) and q ~< K < (1 - Px) (1 - P~v), then two possible 
cases arise. In the first case, the original maximum feasible amount of measure- 
ment error is still feasible. Then the new information only affects the feasible 
allocations of the measurement error to p and q. In the second case, the values of 
M and K are so low that the original maximal amount of measurement error is 
no longer feasible. In this case, not only do the new bounds affect the feasible 
allocation of the measurement error, but the maximal feasible amount of 
measurement error is reduced. 

Theorem 2 gives the upper bound for the case where Px <½ and 
p <~ M < Px(1 - pZxr) and K > (1 - Px) (1 - P~tr). The case where Px > ½ is 
symmetric. Theorem 3 gives the upper bound for the case where 
p <~ M < ex( l  - P~tr) and q ~< K < (1 - Px) (1 - p2r). 
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Theorem 2. Given Model I with Px < ½ and the additional information that 
p <~ M < Px( l  - p~r) but K > ( l - P x ) ( l - p ~ r ) f o r s o m e k n o w n  M and K, 
then 

f d - e x  + b . ( l  - ex), ). 
~< 

max (d(P x - M)  + b(l -- Px) (Px/ (Px -- M)) 
(! 1) 

Theorem3.  Given Model  I with the additional information that p <~ M < 
Px(I  - P~r) and q ~< K < (1 - Px) (1 - p2r), for some known M and K, then 

maxfd(  1 . (  - Px - K) + b. Px ((1 - Px)/(I - Px - K)))  

fl <~ ( d ( P x  -- M) + b(! - Px) ((Px/(Px - M)) ~' 
(12) 

if 
[ (l - P x ) P x  ] 

d~<b ( l - P x  K ) ( P x - M i  ; (13) 

otherwise 

[ (1-- Px)Px ] 
~ < ( I - M - K ) b  ( I - P x  K ) ( P x - M )  " (14) 

It may seem possible to 'bootstrap '  up to tighter bounds by using Eqs. (8) and 
(9) from Theorem 1. Inspection of the results in Theorems 2 and 3 will 
demonstrate  this approach will simply return the original upper bounds from 
Theorem 1. 

The results for prior information bounding p and q from below are very 
similar. In this case, the lower bounds clearly rule out  the minimum feasible 
amount  of measurement  error. Hence, the expression for the new minimum is 
similar to case two of Theorem 3. Since the upper bound on fl occurs when either 
p = 0 or  q = 0, the restrictions on p and q have an impact on the upper bound 
similar to case one of Theorem 3. The new bounds are given in Theorem 4. 

Theorem 4. 
for  some known m and k and the condition that 

d > ~ b [ i  I ( I - P x ) P x  ],  

then 

[ ( l - P x ) P x  ] (1 I - ' X - - K I ( I ' x l  fl> (l-m-k)h , ,  

and 

Given Model  I with the additional information that m <~ p and k <~ q, 

~'d(l - Px - k) + b" Px((l - Px)/(l - Px - k)) } 

fl <~ max ( d ( P x  - m) + b(! - Px) (Px/(Px - m)) 

05) 

(16) 

(17) 
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The condition in the theorem insures that the lower bounds do not rule out all 
feasible values for the measurement error. If p and q are bounded both from 
above and below, the upper bound on fl is the least of the two upper bounds 
from Theorems 3 and 4. 

4. Empirical example: Bounding the union wage differential 

The simplest extension of the results above is to a linear structural equation 
where additional regressors are assumed to be measured without error. This also 
requires that the measurement :~rror process for the mismeasured binary re- 
gressor must be independent of the other regressors. This case is represented by 
Model 11: 

Y = ~ + f l l Z t  +~'~Z_2+u, E[u lZ~ ,_Z2]=O,  (18) 

Pr[X1 = 0 I Z1, _Z2] = (1 - p) (1 - Zl)  + qZt, 09)  

Pr [X,  = 1 I Z~, _Z 2, Y] =(1  - q ) Z ~  + p ( l  - Z~), (20) 

Zt "~ Bernoulli (Pz) with 0 < Pz < 1, (21) 

p + q < 1. {22) 

Again, p and q are the misclassification rates. The researcher can observe Y, X 1, 
the mismeasured version of the binary regressor Z~, and _Z2, the vector of other 
correctly measured regressors, in the particular example here, Y is the natural 
log of average hourly earnings, ZI is the true union status 11 if a member of 
a union, 0 otherwise), while Xt is the reported union status, and the vector 
_Zz contains the variables: Education in years, Potential Experience (Age 
- Education - 6), Potential Experience squared, Race (1 if black), and Gender 

(1 if female). This data set is a subsample from the May 1985 Current Population 
Survey (CPS) of size 533 from Berndt (19911. One observation was dropped since 
Age - Education - 6 was negative. I chose this data set for availability and 
reproducibility. A more comprehensive analysis utilizing more recent data can 
be found in Boilinger (1993). 1 assume that other variables are correctly meas- 
ured and abstract from the problem of endogeneity of the Union variable in 
order to focus on the bounds derived here. 

Bounds, similar to those derived in Section 2, car, be shown for Model II. The 
linear projection of Y on _Z2 yields the vector _b2 as a biased (due to the omitted 
variable Z~) estimate for/~2 and an intercept term a. The linear projection of 
X~ on _Z2 yields slope coefficients _H, an intercept term h0, and an r-squared of 
R~z. The residuals Y* from the regression of Y on Z_z and the residuals X• from 
the regression of X 1 on Z z can be shown to have a structure almost identical to 
Model l. Hence, with only slight modification, the bounds from Model I can be 
applied to the residual model to bound Pl. The bounds o n /~  can then be used 
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with the biased coefficient estimates from the short regression of Y on _Z2 to 
obtain bounds on ~2. This result is summarized in Theorem 5. The term b is the 
slope from the projection of Y* on X*. The term d is the inverse of the slope 
from the projection of X* on Y*. 

Theorem 5. Given Model I !  {ill >1 0 without loss of  generality), 

f d ( e x  + (1 -- ex)R~cz) + b(i -- ex)  (1 -- RZz)} 
b <~/i~ ~ max (d((l - Px) + PxR2z) + bPx(l  - R2xz ) _' (23) 

and the components of  the slope vector ~2 are bounded by the terms b_ z - _lib and 
_b 2 - _Hd. The lower and upper bound of  each component are determined by the 
sign of  each component in Ho. The intercept term is bounded by 

min {a - bho, a - dho} (24) 

and 

max{a - bho, a - dho + Px(l - RZz) (d - b)}. (25) 

All of the terms in the bounds are easily estimable. In addition, estimable 
asymptotic variances can be derived using standard delta method results. The 
result can be modified when the other regressors in the model are potentially 
mismeasured as well. The bounds derived by Kiepper and Learner (1984) can be 
directly incorporated (see Bollinger, 1993). 

Descriptive statistics for the sample are reported in Table 1. The estimated 
upper and lower bounds for the slope coeflicients are reported in Table 2, with 
standard errors of the estimates in parentheses. Since the term _b2 -_Hb is 
associated with the lower bound on lit and the term _b2 - _Hd is associated with 
the upper bound on/11, I have reported these as the vectors 'left' and 'right' 
respectively. The estimated bounds for p and q are reported in Table 3. 

The 'right' bounds can be very large relative to the 'left" bounds. It is 
important to note that the 'left' bounds are also the estimates for the slope 
coetfieients of the model if the measurement error is ignored. This implies that 
measurement error has the potential to cause significant bias. However, in many 
cases it is reasonable to bound p and q from above. I have chosen three sets of 
values for M and K (the upper bounds on p and q, respectively). The first case 

Table i 
Descriptive statistics 

Ln Wage Education Experience Black Gender Union 

Mean 2.06 ! 3.01 17.86 0.13 0.45 0.18 
Std. errol 0.53 2.61 12.37 0.33 0.50 0.38 



C.R. Bollinger / Journal of Econometrics 73 (1996) 387-399 

Table 2 
Estimated bounds for linear model 

Variable Left bounds Right bounds 

Union 0.21 5.48 
(0.05) (I.23) 

Constant 0.60 0.07 
(0.12) (0.65) 

Education 0.09 0.07 
(O.Ol) (0.05) 

Experience 0.04 - 0.01 
(0.01 ) (0.03) 

Experience squared - 0.0005 -0.0001 
(0.0001) (0.0007) 

Black - 0.12 - 0.70 
(0.05) (0.35) 

Gender - 0.23 0.57 
(0.04) (0.21) 

395 

Table 3 
Estimated bounds for p and q 

Minimum Maximum 

p 0 0.1658 
q 0 0.7546 

sets M = 0.13 and K = 0.20. These values are chosen as representative of rather 
weak assumptions (relative to what is known from Table 3) to illustrate the 
sensitivity of the bounds to additional information. The second ease sets 
~d = 0.1 and K = 0.1. This value can be thought of as a 'folk theorem" in which 
measurement error is thought to be less than 10%. In the third case, I utilize 
results from Freeman (1984) and set M - - 0 . 0 2 3  and K = 0.081. This case 
represents Freeman's (1984) worst-case estimates of misreporting union status in 
the CPS. The new 'right' bounds on all the parameters for each of these cases are 
reported in Table 4. Since the information utilized has no impact on the 'left" 
bounds, these remain the same as those reported in Table 2. 

The most striking feature of the results presented in Table 4 is the sensitivity of 
the upper bound to additional information. Focusing only on the values for the 
union coefficient, one notes that even the first case with M = 0.13 and K = 0.20 
results ie substantial improvement in precision (width) of the bounds. The 
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Table  4 
Es t imated  r ight  bounds  for l inear  model  under  s t ronger  informat ion  

Variable  M = 0.13, K = 0.20 M = K = 0.10 M = 0.023, K = 0.081 

Union  0,83 0.47 0.24 
(1.44) (0.33) (0.06) 

Cons t an t  0.52 0.57 0.60 
(0.22) (0.13) (0.13) 

Educat ion  0.09 0.09 0.09 
(O.Ol) (O.Ol) (O.Ol) 

Experience 0.03 0.03 0.04 
(0.02) (0.01) (0.01) 

Experience squared  - 0.0005 - 0.0005 - 0.0005 
(0.0002) (0.0001) (0.0001) 

Black - 0.91 - 0.15 - 0.13 
(0.2O) (O.07) (0.05) 

Gende r  - 0.10 - 0.19 - 0.23 
(0.28) (0.07) (0.04) 

estimated upper bound on the union coefficient falls from 5.48 to 0.83. In fact, 
it can be shown that the bound on p is, in this case, driving the result. Hence, 
the restriction on q could be relaxed even further with no degradation of 
the precision. As the additional information is strengthened, by setting 
M = K = 0.1, the bounds continue to tighten, but at a less dramatic rate: the 
new upper bound on the union coefficient falls to 0.47. Finally, when M = 0.023 
and K = 0.08, the bounds fall to 0.24. 

Mismeasurement may have great impact on the estimates for parameters in 
many models. The example here illustrates how serious this problem may be. 
One approach to gaining insight on the impact of measurement error is to utilize 
bounds, such as those presented here, to estimate the potential impact of 
measurement error. 

Appendix 

Proof  o f  Theorem I 

This proof will focus on the upper bound. The lower bound is derived 
similarly. 

Lemma 1. Given Model I, Px > P and 1 - Px > q. 
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Proof. By definition Px = Pz(1 - q) + (1 - Pz)  P. The result follows from the 
restrictions that 0 < Pz < 1 and p + q < 1. • 

Lemmo 2. Given Model L sign(b) -- sign(r) = sign(0), and for  fl > O, b <~ 0 <~ d. 

Proof. Model I can be rewritten as 

Y = (~ - 60) + OZ* + u, (26) 

X = Z* + e, (27) 

where 
with Z and u. Then it can be shown that 

~ = ~ - 0 # x ~ ,  

V [~] = ~2x(1 - b/O), 

#~ = ~blfl~. 

= 1 - p - q, 6 = - p, 0 = [3/7, Z* = ~ + 7Z, and ~ is uncorrelated 

(28) 

(29) 

(30) 

The first result in the lemma follows from the restrictions that ~z 2 > 0 and 
p + q < 1. The bound on 0 follows from the restrictions that a~ >/0 and V [~] 
>/0. i 

Lemma 3. Given Model ! and any feasible value o f  0 f rom Lemma 2, 

Px b q=(l- Px)(I- ( p - - ~ _  p )  ( ~ ) ) .  

Proof. It can be shown that 

(31) 

Using the result of Lemma 3 and the definition of 7, the maximum feasible 
value for y given 0 is 

By definition of 0, fl = 7 * 0. Hence, the maximum value of fl is 

flm,~ = max 7max0. (34) 
0 

Solving {34) subject to the bounds on 0 from Lemma 2 yields the upper bound 
on ft. The lower bound is found by finding 7 rain for given 0 and similarly finding 

\ 1  - p - q ] q ( l  - q) + p 0  - p). ( 3 2 )  

Setting this expression equal to Eq. (29) and solving for q yields the result. • 
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/p~i,.. The bounds on ~ follow from 

= E [  Y ]  - O(ex  - p) (35)  

and the results from Lemma 2 and Lemma 3. The bounds on p and q follow from 
Lemma 3 and the upper bound on 0. The bounds are tight since there exists 
P, q, Pz, and V[u] to support any ff in the feasible region including the bounds 
themselves. Q.E.D. 

Proof of Theorem 2 

Theorem 2 gives a new upper bound when only p is restricted and Px < ½. if 
Px < ½, then the upper bound on fl is achieved when p = Px(1 - P~'r). The 
restriction on p rules out this allocation. Specifically, the maximum value of 
used in the proof of Theorem 1 is no longer feasible. The maximum value of 
"/under the conditions in Theorem 2 occurs at either p = M or p = O. The proof 
is completed as above by noting that 7maxo gives maximum feasible fl for a given 
0, and 0 = d gives the global maximum of p. Q.E.D. 

Proof of Theorem 3 

Lemma 4. Given Model I and the restrictions that p <~ M < Px(l - P~r) and 
q <<, K < (1 - Px) (1 - P~r), then 

I [  .,x.,. ]t 0 ~ m i n  d,b ( 1 - P - ~ - K - ) ( - P - ~ x - M )  " (36) 

Proof. From Eq. (31), for a particular value of 0 to be feasible given the 
restrictions on p and q, it must be that 

K > ~ ( I - P x ) ( I  (" .P.._x ~(b  
- \ P x -  M ] \ 0 ) ) "  (37) 

Rearranging this restriction and including the result from Lemma 2 gives the 
result. III 

Then the maximum value of ), occurs at either p = M or q = K or both. 
Complete the proof by evaluating 7maxO at the maximum value of 0. Q.E.D. 

Proof of Theorem 4 

Lower Bound: As in Lemma 4, for a particular value of 0 to be feasible, 

Rearranging gives the minimum value of 0 feasible for given k and m. This value 
is only achieved when p = m and q = k. The lower bound follows. 
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Upper Bound: As in Theorem 3, the max imum feasible value for ~, given 
0 occurs at ei ther p = m or  q = k, the  feasible min imums of  p and  q. Comple te  
the proof  by evaluat ing  7re=x0 at  the max imum value of 0 = d. Q.E.D.  

Proof of Theorem 5 

By definit ion Y* = fllZ* + u, where Z* is the residual from the regression of  
Z l  on _Ze. Then,  

VEX*] = v[x1] (1 - RZz). (39) 

The results from Lemma 2 and  Lemma 3 can be appl ied,  yielding bounds  on 
0 = fl~/~, and  

( ( P x  ~((b_~(l_RZxz)+R~cz))" (40) 
q = t l  - v x )  1 - \Px - p ) \ \ o )  

Then~ the upper  and lower bounds  for fit can be found as  in Theorem 1. 

By def in i t ionbz  = ~z + _Ffl~, where _F is the slope from the regression of  Z~ on 
_Z2. Also, _H = ~,_F. Rear ranging  and  util izing the bound  on 0 yield the b o u n d  
on ~2. Q.E.D.  
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